Interval observer design and control of uncertain non-homogeneous heat equations

The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2020-01, Vol.111, p.108595, Article 108595
Hauptverfasser: Kharkovskaia, Tatiana, Efimov, Denis, Fridman, Emilia, Polyakov, Andrey, Richard, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108595
container_title Automatica (Oxford)
container_volume 111
creator Kharkovskaia, Tatiana
Efimov, Denis
Fridman, Emilia
Polyakov, Andrey
Richard, Jean-Pierre
description The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions of boundedness of the interval observer solutions with non-zero boundary conditions and measurement noise are proposed. Third, the obtained interval estimates are used to design a dynamic output-feedback stabilizing controller. The advantages of the PDE-based interval observer over the approximation-based one are clearly shown in the numerical example.
doi_str_mv 10.1016/j.automatica.2019.108595
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02283008v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000510981930456X</els_id><sourcerecordid>S000510981930456X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cd39f37d4f2664c8c279b5319768d5d4c501fd0088517262721a63949ab4c28c3</originalsourceid><addsrcrecordid>eNqFkMtOAyEUhonRxHp5B7YupnKdgWVt1DZpogtdEwpMS9OCAtPEt5dmjC5dnev_55wPAIjRFCPc3u-meijxoIs3ekoQlrUtuORnYIJFRxsiaHsOJggh3mAkxSW4ynlXS4YFmYDXZSguHfUexnWuiUvQuuw3AepgoYmhpFhnPRyCcaloH2CIodnGQ9y44OKQ4dbpAt3nUE-IId-Ai17vs7v9idfg_enxbb5oVi_Py_ls1RiGSGmMpbKnnWU9aVtmhCGdXHOKZdcKyy0zHOHeIiQExx1pSUewbqlkUq-ZIcLQa3A3-m71Xn0kf9DpS0Xt1WK2UqceIvX1anDEdVeMuybFnJPrfwUYqRNFtVN_FNWJohopVunDKHX1l6N3SWXjXWVhfXKmKBv9_ybf6oeADw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interval observer design and control of uncertain non-homogeneous heat equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kharkovskaia, Tatiana ; Efimov, Denis ; Fridman, Emilia ; Polyakov, Andrey ; Richard, Jean-Pierre</creator><creatorcontrib>Kharkovskaia, Tatiana ; Efimov, Denis ; Fridman, Emilia ; Polyakov, Andrey ; Richard, Jean-Pierre</creatorcontrib><description>The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions of boundedness of the interval observer solutions with non-zero boundary conditions and measurement noise are proposed. Third, the obtained interval estimates are used to design a dynamic output-feedback stabilizing controller. The advantages of the PDE-based interval observer over the approximation-based one are clearly shown in the numerical example.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2019.108595</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Engineering Sciences</subject><ispartof>Automatica (Oxford), 2020-01, Vol.111, p.108595, Article 108595</ispartof><rights>2019 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cd39f37d4f2664c8c279b5319768d5d4c501fd0088517262721a63949ab4c28c3</citedby><cites>FETCH-LOGICAL-c402t-cd39f37d4f2664c8c279b5319768d5d4c501fd0088517262721a63949ab4c28c3</cites><orcidid>0000-0001-8847-5235 ; 0000-0002-9497-0432 ; 0000-0002-5876-3495 ; 0000-0002-8773-9494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2019.108595$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-02283008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kharkovskaia, Tatiana</creatorcontrib><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Fridman, Emilia</creatorcontrib><creatorcontrib>Polyakov, Andrey</creatorcontrib><creatorcontrib>Richard, Jean-Pierre</creatorcontrib><title>Interval observer design and control of uncertain non-homogeneous heat equations</title><title>Automatica (Oxford)</title><description>The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions of boundedness of the interval observer solutions with non-zero boundary conditions and measurement noise are proposed. Third, the obtained interval estimates are used to design a dynamic output-feedback stabilizing controller. The advantages of the PDE-based interval observer over the approximation-based one are clearly shown in the numerical example.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAyEUhonRxHp5B7YupnKdgWVt1DZpogtdEwpMS9OCAtPEt5dmjC5dnev_55wPAIjRFCPc3u-meijxoIs3ekoQlrUtuORnYIJFRxsiaHsOJggh3mAkxSW4ynlXS4YFmYDXZSguHfUexnWuiUvQuuw3AepgoYmhpFhnPRyCcaloH2CIodnGQ9y44OKQ4dbpAt3nUE-IId-Ai17vs7v9idfg_enxbb5oVi_Py_ls1RiGSGmMpbKnnWU9aVtmhCGdXHOKZdcKyy0zHOHeIiQExx1pSUewbqlkUq-ZIcLQa3A3-m71Xn0kf9DpS0Xt1WK2UqceIvX1anDEdVeMuybFnJPrfwUYqRNFtVN_FNWJohopVunDKHX1l6N3SWXjXWVhfXKmKBv9_ybf6oeADw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kharkovskaia, Tatiana</creator><creator>Efimov, Denis</creator><creator>Fridman, Emilia</creator><creator>Polyakov, Andrey</creator><creator>Richard, Jean-Pierre</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid><orcidid>https://orcid.org/0000-0002-9497-0432</orcidid><orcidid>https://orcid.org/0000-0002-5876-3495</orcidid><orcidid>https://orcid.org/0000-0002-8773-9494</orcidid></search><sort><creationdate>202001</creationdate><title>Interval observer design and control of uncertain non-homogeneous heat equations</title><author>Kharkovskaia, Tatiana ; Efimov, Denis ; Fridman, Emilia ; Polyakov, Andrey ; Richard, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cd39f37d4f2664c8c279b5319768d5d4c501fd0088517262721a63949ab4c28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharkovskaia, Tatiana</creatorcontrib><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Fridman, Emilia</creatorcontrib><creatorcontrib>Polyakov, Andrey</creatorcontrib><creatorcontrib>Richard, Jean-Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharkovskaia, Tatiana</au><au>Efimov, Denis</au><au>Fridman, Emilia</au><au>Polyakov, Andrey</au><au>Richard, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval observer design and control of uncertain non-homogeneous heat equations</atitle><jtitle>Automatica (Oxford)</jtitle><date>2020-01</date><risdate>2020</risdate><volume>111</volume><spage>108595</spage><pages>108595-</pages><artnum>108595</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions of boundedness of the interval observer solutions with non-zero boundary conditions and measurement noise are proposed. Third, the obtained interval estimates are used to design a dynamic output-feedback stabilizing controller. The advantages of the PDE-based interval observer over the approximation-based one are clearly shown in the numerical example.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2019.108595</doi><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid><orcidid>https://orcid.org/0000-0002-9497-0432</orcidid><orcidid>https://orcid.org/0000-0002-5876-3495</orcidid><orcidid>https://orcid.org/0000-0002-8773-9494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2020-01, Vol.111, p.108595, Article 108595
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_02283008v1
source ScienceDirect Journals (5 years ago - present)
subjects Automatic
Engineering Sciences
title Interval observer design and control of uncertain non-homogeneous heat equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20observer%20design%20and%20control%20of%20uncertain%20non-homogeneous%20heat%20equations&rft.jtitle=Automatica%20(Oxford)&rft.au=Kharkovskaia,%20Tatiana&rft.date=2020-01&rft.volume=111&rft.spage=108595&rft.pages=108595-&rft.artnum=108595&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2019.108595&rft_dat=%3Celsevier_hal_p%3ES000510981930456X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S000510981930456X&rfr_iscdi=true