Oblate to prolate transition of a vesicle under flow

Vesicles are micrometric soft particles whose the membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles is inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2019
Hauptverfasser: Degonville, Maximilien, Boedec, Gwenn, Leonetti, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title The European physical journal. E, Soft matter and biological physics
container_volume
creator Degonville, Maximilien
Boedec, Gwenn
Leonetti, Marc
description Vesicles are micrometric soft particles whose the membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details. In particular, we discuss the boundaries of the region of coexistence in the (v, Ca) plane where v is the reduced volume of the vesicle and Ca the Capillary number. We characterize the transition from oblate to prolate and analyse the divergence of the transition time near the critical capillary number. We then analyse lift dynamics of oblate vesicle in the weak flow regime.
doi_str_mv 10.1140/epje/i2019-11881-0
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02281221v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02281221v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_02281221v13</originalsourceid><addsrcrecordid>eNqVi70KwjAURoMoWH9ewCmrQ-y9aYV0FFE6CC4d3ELUFFNiU5Ja8e1VFHenczh8HyEzhAViCrFuKh0bDpgxRCGQQY9EyDPORLY89H-e4pCMQqgA4HVLIpLuj1a1mraONt591Ks6mNa4mrqSKtrpYE5W01t91p6W1t0nZFAqG_T0yzGZbzfFOmcXZWXjzVX5h3TKyHy1k-8GnAvkHDtM_tk-Af0gP9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oblate to prolate transition of a vesicle under flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Degonville, Maximilien ; Boedec, Gwenn ; Leonetti, Marc</creator><creatorcontrib>Degonville, Maximilien ; Boedec, Gwenn ; Leonetti, Marc</creatorcontrib><description>Vesicles are micrometric soft particles whose the membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details. In particular, we discuss the boundaries of the region of coexistence in the (v, Ca) plane where v is the reduced volume of the vesicle and Ca the Capillary number. We characterize the transition from oblate to prolate and analyse the divergence of the transition time near the critical capillary number. We then analyse lift dynamics of oblate vesicle in the weak flow regime.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2019-11881-0</identifier><language>eng</language><publisher>EDP Sciences: EPJ</publisher><subject>Biomechanics ; Condensed Matter ; Fluid mechanics ; Mechanics ; Physics ; Soft Condensed Matter</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2019</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5781-2884 ; 0000-0002-4500-1360 ; 0000-0002-4500-1360 ; 0000-0001-5781-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02281221$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Degonville, Maximilien</creatorcontrib><creatorcontrib>Boedec, Gwenn</creatorcontrib><creatorcontrib>Leonetti, Marc</creatorcontrib><title>Oblate to prolate transition of a vesicle under flow</title><title>The European physical journal. E, Soft matter and biological physics</title><description>Vesicles are micrometric soft particles whose the membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details. In particular, we discuss the boundaries of the region of coexistence in the (v, Ca) plane where v is the reduced volume of the vesicle and Ca the Capillary number. We characterize the transition from oblate to prolate and analyse the divergence of the transition time near the critical capillary number. We then analyse lift dynamics of oblate vesicle in the weak flow regime.</description><subject>Biomechanics</subject><subject>Condensed Matter</subject><subject>Fluid mechanics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqVi70KwjAURoMoWH9ewCmrQ-y9aYV0FFE6CC4d3ELUFFNiU5Ja8e1VFHenczh8HyEzhAViCrFuKh0bDpgxRCGQQY9EyDPORLY89H-e4pCMQqgA4HVLIpLuj1a1mraONt591Ks6mNa4mrqSKtrpYE5W01t91p6W1t0nZFAqG_T0yzGZbzfFOmcXZWXjzVX5h3TKyHy1k-8GnAvkHDtM_tk-Af0gP9U</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Degonville, Maximilien</creator><creator>Boedec, Gwenn</creator><creator>Leonetti, Marc</creator><general>EDP Sciences: EPJ</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5781-2884</orcidid><orcidid>https://orcid.org/0000-0002-4500-1360</orcidid><orcidid>https://orcid.org/0000-0002-4500-1360</orcidid><orcidid>https://orcid.org/0000-0001-5781-2884</orcidid></search><sort><creationdate>2019</creationdate><title>Oblate to prolate transition of a vesicle under flow</title><author>Degonville, Maximilien ; Boedec, Gwenn ; Leonetti, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_02281221v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomechanics</topic><topic>Condensed Matter</topic><topic>Fluid mechanics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Degonville, Maximilien</creatorcontrib><creatorcontrib>Boedec, Gwenn</creatorcontrib><creatorcontrib>Leonetti, Marc</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Degonville, Maximilien</au><au>Boedec, Gwenn</au><au>Leonetti, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oblate to prolate transition of a vesicle under flow</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><date>2019</date><risdate>2019</risdate><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Vesicles are micrometric soft particles whose the membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details. In particular, we discuss the boundaries of the region of coexistence in the (v, Ca) plane where v is the reduced volume of the vesicle and Ca the Capillary number. We characterize the transition from oblate to prolate and analyse the divergence of the transition time near the critical capillary number. We then analyse lift dynamics of oblate vesicle in the weak flow regime.</abstract><pub>EDP Sciences: EPJ</pub><doi>10.1140/epje/i2019-11881-0</doi><orcidid>https://orcid.org/0000-0001-5781-2884</orcidid><orcidid>https://orcid.org/0000-0002-4500-1360</orcidid><orcidid>https://orcid.org/0000-0002-4500-1360</orcidid><orcidid>https://orcid.org/0000-0001-5781-2884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2019
issn 1292-8941
1292-895X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02281221v1
source SpringerLink Journals - AutoHoldings
subjects Biomechanics
Condensed Matter
Fluid mechanics
Mechanics
Physics
Soft Condensed Matter
title Oblate to prolate transition of a vesicle under flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oblate%20to%20prolate%20transition%20of%20a%20vesicle%20under%20flow&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Degonville,%20Maximilien&rft.date=2019&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2019-11881-0&rft_dat=%3Chal%3Eoai_HAL_hal_02281221v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true