Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium
Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the sign...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2019-07, Vol.128 (3), p.861-879 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 879 |
---|---|
container_issue | 3 |
container_start_page | 861 |
container_title | Transport in porous media |
container_volume | 128 |
creator | Hidri, F. Diouf, B. Bouhlila, R. Geoffroy, S. Prat, M. |
description | Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium. |
doi_str_mv | 10.1007/s11242-018-1098-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02278716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344560794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</originalsourceid><addsrcrecordid>eNp9kU9LwzAYh4MoOKcfwFvAk4dqkqb_jjKmEyqK03NI07dbx5rMJB3u25tS0ZNCICF5nl9e-CF0SckNJSS7dZQyziJC84iSIo8OR2hCkyyOaBrzYzQhNC2iuKDxKTpzbkNIsHI-QXrp5UpL3xqNX0yrvcPS4dKoFpsGL82294BnRivQ3o7Y_NNb6CSWHvs14Ple7szwtAe87G0jFQyqxK9S16YLqdb0Dj9B3fbdOTpp5NbBxfc-Re_387fZIiqfHx5nd2WkOKM-aohiaaHihGRJODEFHGqeUAlxTnKVJ2FxII0qoGJVwQivc17UVd3ICjLG4im6HnPXcit2tu2kPQgjW7G4K8VwRxjL8oymexrYq5HdWfPRg_NiY3qrw3iCxZwnKckK_i_FeJg6zZIhi46UssY5C83P55SIoSgxFiVCUWIoShyCw0bHBVavwP4m_y19ATTslS0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344560794</pqid></control><display><type>article</type><title>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</title><source>SpringerNature Journals</source><creator>Hidri, F. ; Diouf, B. ; Bouhlila, R. ; Geoffroy, S. ; Prat, M.</creator><creatorcontrib>Hidri, F. ; Diouf, B. ; Bouhlila, R. ; Geoffroy, S. ; Prat, M.</creatorcontrib><description>Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-018-1098-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemical precipitation ; Civil Engineering ; Classical and Continuum Physics ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Engineering Sciences ; Evaporation ; Fluids mechanics ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Ion concentration ; Ions ; Maxima ; Mechanics ; Minima ; Permeability ; Porous media ; Saline solutions ; Stagnation ; Velocity distribution</subject><ispartof>Transport in porous media, 2019-07, Vol.128 (3), p.861-879</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Transport in Porous Media is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</citedby><cites>FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</cites><orcidid>0000-0001-8685-6595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-018-1098-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-018-1098-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-02278716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidri, F.</creatorcontrib><creatorcontrib>Diouf, B.</creatorcontrib><creatorcontrib>Bouhlila, R.</creatorcontrib><creatorcontrib>Geoffroy, S.</creatorcontrib><creatorcontrib>Prat, M.</creatorcontrib><title>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.</description><subject>Chemical precipitation</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Evaporation</subject><subject>Fluids mechanics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ion concentration</subject><subject>Ions</subject><subject>Maxima</subject><subject>Mechanics</subject><subject>Minima</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Saline solutions</subject><subject>Stagnation</subject><subject>Velocity distribution</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9LwzAYh4MoOKcfwFvAk4dqkqb_jjKmEyqK03NI07dbx5rMJB3u25tS0ZNCICF5nl9e-CF0SckNJSS7dZQyziJC84iSIo8OR2hCkyyOaBrzYzQhNC2iuKDxKTpzbkNIsHI-QXrp5UpL3xqNX0yrvcPS4dKoFpsGL82294BnRivQ3o7Y_NNb6CSWHvs14Ple7szwtAe87G0jFQyqxK9S16YLqdb0Dj9B3fbdOTpp5NbBxfc-Re_387fZIiqfHx5nd2WkOKM-aohiaaHihGRJODEFHGqeUAlxTnKVJ2FxII0qoGJVwQivc17UVd3ICjLG4im6HnPXcit2tu2kPQgjW7G4K8VwRxjL8oymexrYq5HdWfPRg_NiY3qrw3iCxZwnKckK_i_FeJg6zZIhi46UssY5C83P55SIoSgxFiVCUWIoShyCw0bHBVavwP4m_y19ATTslS0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hidri, F.</creator><creator>Diouf, B.</creator><creator>Bouhlila, R.</creator><creator>Geoffroy, S.</creator><creator>Prat, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8685-6595</orcidid></search><sort><creationdate>20190701</creationdate><title>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</title><author>Hidri, F. ; Diouf, B. ; Bouhlila, R. ; Geoffroy, S. ; Prat, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical precipitation</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Evaporation</topic><topic>Fluids mechanics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ion concentration</topic><topic>Ions</topic><topic>Maxima</topic><topic>Mechanics</topic><topic>Minima</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Saline solutions</topic><topic>Stagnation</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidri, F.</creatorcontrib><creatorcontrib>Diouf, B.</creatorcontrib><creatorcontrib>Bouhlila, R.</creatorcontrib><creatorcontrib>Geoffroy, S.</creatorcontrib><creatorcontrib>Prat, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidri, F.</au><au>Diouf, B.</au><au>Bouhlila, R.</au><au>Geoffroy, S.</au><au>Prat, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>128</volume><issue>3</issue><spage>861</spage><epage>879</epage><pages>861-879</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-018-1098-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8685-6595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2019-07, Vol.128 (3), p.861-879 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02278716v1 |
source | SpringerNature Journals |
subjects | Chemical precipitation Civil Engineering Classical and Continuum Physics Crystallization Earth and Environmental Science Earth Sciences Engineering Sciences Evaporation Fluids mechanics Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Ion concentration Ions Maxima Mechanics Minima Permeability Porous media Saline solutions Stagnation Velocity distribution |
title | Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stagnation%20Points%20as%20Loci%20of%20Solute%20Concentration%20Extrema%20at%20the%20Evaporative%20Surface%20of%20a%20Random%20Porous%20Medium&rft.jtitle=Transport%20in%20porous%20media&rft.au=Hidri,%20F.&rft.date=2019-07-01&rft.volume=128&rft.issue=3&rft.spage=861&rft.epage=879&rft.pages=861-879&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-018-1098-y&rft_dat=%3Cproquest_hal_p%3E2344560794%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344560794&rft_id=info:pmid/&rfr_iscdi=true |