Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium

Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2019-07, Vol.128 (3), p.861-879
Hauptverfasser: Hidri, F., Diouf, B., Bouhlila, R., Geoffroy, S., Prat, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 879
container_issue 3
container_start_page 861
container_title Transport in porous media
container_volume 128
creator Hidri, F.
Diouf, B.
Bouhlila, R.
Geoffroy, S.
Prat, M.
description Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.
doi_str_mv 10.1007/s11242-018-1098-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02278716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344560794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</originalsourceid><addsrcrecordid>eNp9kU9LwzAYh4MoOKcfwFvAk4dqkqb_jjKmEyqK03NI07dbx5rMJB3u25tS0ZNCICF5nl9e-CF0SckNJSS7dZQyziJC84iSIo8OR2hCkyyOaBrzYzQhNC2iuKDxKTpzbkNIsHI-QXrp5UpL3xqNX0yrvcPS4dKoFpsGL82294BnRivQ3o7Y_NNb6CSWHvs14Ple7szwtAe87G0jFQyqxK9S16YLqdb0Dj9B3fbdOTpp5NbBxfc-Re_387fZIiqfHx5nd2WkOKM-aohiaaHihGRJODEFHGqeUAlxTnKVJ2FxII0qoGJVwQivc17UVd3ICjLG4im6HnPXcit2tu2kPQgjW7G4K8VwRxjL8oymexrYq5HdWfPRg_NiY3qrw3iCxZwnKckK_i_FeJg6zZIhi46UssY5C83P55SIoSgxFiVCUWIoShyCw0bHBVavwP4m_y19ATTslS0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344560794</pqid></control><display><type>article</type><title>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</title><source>SpringerNature Journals</source><creator>Hidri, F. ; Diouf, B. ; Bouhlila, R. ; Geoffroy, S. ; Prat, M.</creator><creatorcontrib>Hidri, F. ; Diouf, B. ; Bouhlila, R. ; Geoffroy, S. ; Prat, M.</creatorcontrib><description>Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-018-1098-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemical precipitation ; Civil Engineering ; Classical and Continuum Physics ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Engineering Sciences ; Evaporation ; Fluids mechanics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Ion concentration ; Ions ; Maxima ; Mechanics ; Minima ; Permeability ; Porous media ; Saline solutions ; Stagnation ; Velocity distribution</subject><ispartof>Transport in porous media, 2019-07, Vol.128 (3), p.861-879</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Transport in Porous Media is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</citedby><cites>FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</cites><orcidid>0000-0001-8685-6595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-018-1098-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-018-1098-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-02278716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidri, F.</creatorcontrib><creatorcontrib>Diouf, B.</creatorcontrib><creatorcontrib>Bouhlila, R.</creatorcontrib><creatorcontrib>Geoffroy, S.</creatorcontrib><creatorcontrib>Prat, M.</creatorcontrib><title>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.</description><subject>Chemical precipitation</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Evaporation</subject><subject>Fluids mechanics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ion concentration</subject><subject>Ions</subject><subject>Maxima</subject><subject>Mechanics</subject><subject>Minima</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Saline solutions</subject><subject>Stagnation</subject><subject>Velocity distribution</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9LwzAYh4MoOKcfwFvAk4dqkqb_jjKmEyqK03NI07dbx5rMJB3u25tS0ZNCICF5nl9e-CF0SckNJSS7dZQyziJC84iSIo8OR2hCkyyOaBrzYzQhNC2iuKDxKTpzbkNIsHI-QXrp5UpL3xqNX0yrvcPS4dKoFpsGL82294BnRivQ3o7Y_NNb6CSWHvs14Ple7szwtAe87G0jFQyqxK9S16YLqdb0Dj9B3fbdOTpp5NbBxfc-Re_387fZIiqfHx5nd2WkOKM-aohiaaHihGRJODEFHGqeUAlxTnKVJ2FxII0qoGJVwQivc17UVd3ICjLG4im6HnPXcit2tu2kPQgjW7G4K8VwRxjL8oymexrYq5HdWfPRg_NiY3qrw3iCxZwnKckK_i_FeJg6zZIhi46UssY5C83P55SIoSgxFiVCUWIoShyCw0bHBVavwP4m_y19ATTslS0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hidri, F.</creator><creator>Diouf, B.</creator><creator>Bouhlila, R.</creator><creator>Geoffroy, S.</creator><creator>Prat, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8685-6595</orcidid></search><sort><creationdate>20190701</creationdate><title>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</title><author>Hidri, F. ; Diouf, B. ; Bouhlila, R. ; Geoffroy, S. ; Prat, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f0c269c35075c262ce4ed451ae3808c85c854e0fc9eb2b9204d849dbdfabe7223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical precipitation</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Evaporation</topic><topic>Fluids mechanics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ion concentration</topic><topic>Ions</topic><topic>Maxima</topic><topic>Mechanics</topic><topic>Minima</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Saline solutions</topic><topic>Stagnation</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidri, F.</creatorcontrib><creatorcontrib>Diouf, B.</creatorcontrib><creatorcontrib>Bouhlila, R.</creatorcontrib><creatorcontrib>Geoffroy, S.</creatorcontrib><creatorcontrib>Prat, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidri, F.</au><au>Diouf, B.</au><au>Bouhlila, R.</au><au>Geoffroy, S.</au><au>Prat, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>128</volume><issue>3</issue><spage>861</spage><epage>879</epage><pages>861-879</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Evaporation of a saline solution from a porous medium often leads to the precipitation of salt at the surface of the porous medium. It is commonly observed that the crystallized salt does not form everywhere at the porous medium surface but at some specific locations. This is interpreted at the signature of spatial variations in the salt concentration at the surface of the porous medium prior to the onset of crystallization. We explore numerically the link between the ion concentration spatial variations at the surface and porous medium heterogeneities considering strongly anisotropic short-range correlated permeability Gaussian fields corresponding to a vertical layering perpendicular to the top evaporative surface for the case of the evaporation–wicking situation. It is shown that the ion concentration extrema at the surfaces correspond to stagnation points with minima corresponding to divergent stagnation points and maxima to convergent stagnation points. Counter-intuitively, the ion concentration maxima are shown to correspond to permeability minima. However, the ion concentration absolute maximum does not necessarily always correspond to the permeability absolute minimum. More generally, the study emphasizes the key role played by the impact of heterogeneities on the velocity field induced in the medium by the evaporation process. It is also shown that the number of ion mass fraction maxima at the porous medium surface is generally much lower than the naive prediction based on the number of correlation lengths spanning the medium.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-018-1098-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8685-6595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2019-07, Vol.128 (3), p.861-879
issn 0169-3913
1573-1634
language eng
recordid cdi_hal_primary_oai_HAL_hal_02278716v1
source SpringerNature Journals
subjects Chemical precipitation
Civil Engineering
Classical and Continuum Physics
Crystallization
Earth and Environmental Science
Earth Sciences
Engineering Sciences
Evaporation
Fluids mechanics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Ion concentration
Ions
Maxima
Mechanics
Minima
Permeability
Porous media
Saline solutions
Stagnation
Velocity distribution
title Stagnation Points as Loci of Solute Concentration Extrema at the Evaporative Surface of a Random Porous Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stagnation%20Points%20as%20Loci%20of%20Solute%20Concentration%20Extrema%20at%20the%20Evaporative%20Surface%20of%20a%20Random%20Porous%20Medium&rft.jtitle=Transport%20in%20porous%20media&rft.au=Hidri,%20F.&rft.date=2019-07-01&rft.volume=128&rft.issue=3&rft.spage=861&rft.epage=879&rft.pages=861-879&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-018-1098-y&rft_dat=%3Cproquest_hal_p%3E2344560794%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344560794&rft_id=info:pmid/&rfr_iscdi=true