Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes

[Display omitted] •Decrease catalysts loading below ten micrograms per square centimeter of electrode.•Bridging boron nitride between palladium and carbon fosters kinetics and stability.•Multifunctional catalyst for both oxygen reduction and C2 alcohol electrooxidation.•Atomic layer deposition enabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-11, Vol.257, p.117917, Article 117917
Hauptverfasser: Weber, Matthieu, Tuleushova, Nazym, Zgheib, Joelle, Lamboux, Cassandre, Iatsunskyi, Igor, Coy, Emerson, Flaud, Valerie, Tingry, Sophie, Cornu, David, Miele, Philippe, Bechelany, Mikhael, Holade, Yaovi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117917
container_title Applied catalysis. B, Environmental
container_volume 257
creator Weber, Matthieu
Tuleushova, Nazym
Zgheib, Joelle
Lamboux, Cassandre
Iatsunskyi, Igor
Coy, Emerson
Flaud, Valerie
Tingry, Sophie
Cornu, David
Miele, Philippe
Bechelany, Mikhael
Holade, Yaovi
description [Display omitted] •Decrease catalysts loading below ten micrograms per square centimeter of electrode.•Bridging boron nitride between palladium and carbon fosters kinetics and stability.•Multifunctional catalyst for both oxygen reduction and C2 alcohol electrooxidation.•Atomic layer deposition enables to engineer highly active palladium nanocomposites. Significant reduction of the amount of precious metals in catalysts is a major challenge. We report the synthesis of high-performance carbon paper-boron nitride-palladium (CP-BN-Pd) electrocatalytic electrodes. The nanocatalysts consist of Pd nanoparticles of 5 nm supported on an ultrathin BN film prepared by atomic layer deposition (ALD), covering the microfibers of gas-diffusion electrodes (GDL). These electrodes present significantly enhanced electrocatalytic performance towards oxygen reduction (ORR) and C2 alcohols oxidation reactions and outperform the reported data for those alcohols in alkaline media, reaching a peak current of 17 amps/mgPd in 1 M NaOH + 1 M ethanol. The ageing tests reveal excellent stability of the electrochemically active surface area even after 1000 cycles, and the ethanol oxidation activity shows negligible decay of 1% whereas commercial Pd/C show prominent decay of 44%. The use of this heterogeneous active interface opens a new route for the development of efficient and low-metal content nanocatalysts.
doi_str_mv 10.1016/j.apcatb.2019.117917
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02278669v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319306630</els_id><sourcerecordid>2283281619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-17c4bb6119c686c4a83e48cf3a908f4996a141ae6977ff0d24d45324fc806d2b3</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhQtRcBx9AxcBVy6qzd-kko0wDKMjNLjRdbiV3PSkqU7KpHqkH8c3NUUNLl0FTr5zuPeernvP6I5Rpj4ddzA7WMYdp8zsGBsMG150V0wPohdai5fdFTVc9UIM4nX3ptYjpZQLrq-6P_fpEZJDT3BCt5TccmC6LNGRGUvI5bT-kqXEwwFLw8YLgSWfooNpupCxRH9Y1VxyIik2ziMZcfmNmMjcGPDxfCIJUp6htNgJK4HkiYMyNkuII5ZKYiIHqL2PIZxrbPrzNB7r2-5VgKniu-f3uvv55f7H3UO___71293tvnfyhi09G5wcR8WYcUorJ0ELlNoFAYbqII1RwCQDVGYYQqCeSy9vBJfBaao8H8V193HLfYTJziWeoFxshmgfbvd21Sjng1bKPLHGftjYueRfZ6yLPeZzSW08y7luh2WKmUbJjXIl11ow_Itl1K7F2aPdirNrcXYrrtk-bzZs2z5FLLa6iGtHsbSjWJ_j_wP-AiOLpnU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283281619</pqid></control><display><type>article</type><title>Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Weber, Matthieu ; Tuleushova, Nazym ; Zgheib, Joelle ; Lamboux, Cassandre ; Iatsunskyi, Igor ; Coy, Emerson ; Flaud, Valerie ; Tingry, Sophie ; Cornu, David ; Miele, Philippe ; Bechelany, Mikhael ; Holade, Yaovi</creator><creatorcontrib>Weber, Matthieu ; Tuleushova, Nazym ; Zgheib, Joelle ; Lamboux, Cassandre ; Iatsunskyi, Igor ; Coy, Emerson ; Flaud, Valerie ; Tingry, Sophie ; Cornu, David ; Miele, Philippe ; Bechelany, Mikhael ; Holade, Yaovi</creatorcontrib><description>[Display omitted] •Decrease catalysts loading below ten micrograms per square centimeter of electrode.•Bridging boron nitride between palladium and carbon fosters kinetics and stability.•Multifunctional catalyst for both oxygen reduction and C2 alcohol electrooxidation.•Atomic layer deposition enables to engineer highly active palladium nanocomposites. Significant reduction of the amount of precious metals in catalysts is a major challenge. We report the synthesis of high-performance carbon paper-boron nitride-palladium (CP-BN-Pd) electrocatalytic electrodes. The nanocatalysts consist of Pd nanoparticles of 5 nm supported on an ultrathin BN film prepared by atomic layer deposition (ALD), covering the microfibers of gas-diffusion electrodes (GDL). These electrodes present significantly enhanced electrocatalytic performance towards oxygen reduction (ORR) and C2 alcohols oxidation reactions and outperform the reported data for those alcohols in alkaline media, reaching a peak current of 17 amps/mgPd in 1 M NaOH + 1 M ethanol. The ageing tests reveal excellent stability of the electrochemically active surface area even after 1000 cycles, and the ethanol oxidation activity shows negligible decay of 1% whereas commercial Pd/C show prominent decay of 44%. The use of this heterogeneous active interface opens a new route for the development of efficient and low-metal content nanocatalysts.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.117917</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aging ; Alcohol ; Alcohols ; Atomic layer deposition ; Atomic layer epitaxy ; Boron ; Boron fibers ; Boron nitride ; Carbon fibers ; Catalysts ; Chemical Sciences ; Decay ; Diffusion electrodes ; Diffusion layers ; Electrodes ; Ethanol ; Ethanol electrooxidation reaction ; Heavy metals ; Microfibers ; Nanoparticles ; Oxidation ; Oxygen reduction reaction ; Palladium ; Palladium nanoparticles ; Reduction ; Sodium hydroxide ; Surface stability</subject><ispartof>Applied catalysis. B, Environmental, 2019-11, Vol.257, p.117917, Article 117917</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-17c4bb6119c686c4a83e48cf3a908f4996a141ae6977ff0d24d45324fc806d2b3</citedby><cites>FETCH-LOGICAL-c451t-17c4bb6119c686c4a83e48cf3a908f4996a141ae6977ff0d24d45324fc806d2b3</cites><orcidid>0000-0002-2913-2846 ; 0000-0002-4149-9720 ; 0000-0002-8806-568X ; 0000-0001-9420-7376 ; 0000-0002-5205-3038 ; 0000-0001-5459-4770 ; 0000-0001-6311-9330 ; 0000-0003-2490-6168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2019.117917$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-02278669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Matthieu</creatorcontrib><creatorcontrib>Tuleushova, Nazym</creatorcontrib><creatorcontrib>Zgheib, Joelle</creatorcontrib><creatorcontrib>Lamboux, Cassandre</creatorcontrib><creatorcontrib>Iatsunskyi, Igor</creatorcontrib><creatorcontrib>Coy, Emerson</creatorcontrib><creatorcontrib>Flaud, Valerie</creatorcontrib><creatorcontrib>Tingry, Sophie</creatorcontrib><creatorcontrib>Cornu, David</creatorcontrib><creatorcontrib>Miele, Philippe</creatorcontrib><creatorcontrib>Bechelany, Mikhael</creatorcontrib><creatorcontrib>Holade, Yaovi</creatorcontrib><title>Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Decrease catalysts loading below ten micrograms per square centimeter of electrode.•Bridging boron nitride between palladium and carbon fosters kinetics and stability.•Multifunctional catalyst for both oxygen reduction and C2 alcohol electrooxidation.•Atomic layer deposition enables to engineer highly active palladium nanocomposites. Significant reduction of the amount of precious metals in catalysts is a major challenge. We report the synthesis of high-performance carbon paper-boron nitride-palladium (CP-BN-Pd) electrocatalytic electrodes. The nanocatalysts consist of Pd nanoparticles of 5 nm supported on an ultrathin BN film prepared by atomic layer deposition (ALD), covering the microfibers of gas-diffusion electrodes (GDL). These electrodes present significantly enhanced electrocatalytic performance towards oxygen reduction (ORR) and C2 alcohols oxidation reactions and outperform the reported data for those alcohols in alkaline media, reaching a peak current of 17 amps/mgPd in 1 M NaOH + 1 M ethanol. The ageing tests reveal excellent stability of the electrochemically active surface area even after 1000 cycles, and the ethanol oxidation activity shows negligible decay of 1% whereas commercial Pd/C show prominent decay of 44%. The use of this heterogeneous active interface opens a new route for the development of efficient and low-metal content nanocatalysts.</description><subject>Aging</subject><subject>Alcohol</subject><subject>Alcohols</subject><subject>Atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Boron</subject><subject>Boron fibers</subject><subject>Boron nitride</subject><subject>Carbon fibers</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Decay</subject><subject>Diffusion electrodes</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Ethanol</subject><subject>Ethanol electrooxidation reaction</subject><subject>Heavy metals</subject><subject>Microfibers</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxygen reduction reaction</subject><subject>Palladium</subject><subject>Palladium nanoparticles</subject><subject>Reduction</subject><subject>Sodium hydroxide</subject><subject>Surface stability</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEUhQtRcBx9AxcBVy6qzd-kko0wDKMjNLjRdbiV3PSkqU7KpHqkH8c3NUUNLl0FTr5zuPeernvP6I5Rpj4ddzA7WMYdp8zsGBsMG150V0wPohdai5fdFTVc9UIM4nX3ptYjpZQLrq-6P_fpEZJDT3BCt5TccmC6LNGRGUvI5bT-kqXEwwFLw8YLgSWfooNpupCxRH9Y1VxyIik2ziMZcfmNmMjcGPDxfCIJUp6htNgJK4HkiYMyNkuII5ZKYiIHqL2PIZxrbPrzNB7r2-5VgKniu-f3uvv55f7H3UO___71293tvnfyhi09G5wcR8WYcUorJ0ELlNoFAYbqII1RwCQDVGYYQqCeSy9vBJfBaao8H8V193HLfYTJziWeoFxshmgfbvd21Sjng1bKPLHGftjYueRfZ6yLPeZzSW08y7luh2WKmUbJjXIl11ow_Itl1K7F2aPdirNrcXYrrtk-bzZs2z5FLLa6iGtHsbSjWJ_j_wP-AiOLpnU</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Weber, Matthieu</creator><creator>Tuleushova, Nazym</creator><creator>Zgheib, Joelle</creator><creator>Lamboux, Cassandre</creator><creator>Iatsunskyi, Igor</creator><creator>Coy, Emerson</creator><creator>Flaud, Valerie</creator><creator>Tingry, Sophie</creator><creator>Cornu, David</creator><creator>Miele, Philippe</creator><creator>Bechelany, Mikhael</creator><creator>Holade, Yaovi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2913-2846</orcidid><orcidid>https://orcid.org/0000-0002-4149-9720</orcidid><orcidid>https://orcid.org/0000-0002-8806-568X</orcidid><orcidid>https://orcid.org/0000-0001-9420-7376</orcidid><orcidid>https://orcid.org/0000-0002-5205-3038</orcidid><orcidid>https://orcid.org/0000-0001-5459-4770</orcidid><orcidid>https://orcid.org/0000-0001-6311-9330</orcidid><orcidid>https://orcid.org/0000-0003-2490-6168</orcidid></search><sort><creationdate>20191115</creationdate><title>Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes</title><author>Weber, Matthieu ; Tuleushova, Nazym ; Zgheib, Joelle ; Lamboux, Cassandre ; Iatsunskyi, Igor ; Coy, Emerson ; Flaud, Valerie ; Tingry, Sophie ; Cornu, David ; Miele, Philippe ; Bechelany, Mikhael ; Holade, Yaovi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-17c4bb6119c686c4a83e48cf3a908f4996a141ae6977ff0d24d45324fc806d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Alcohol</topic><topic>Alcohols</topic><topic>Atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Boron</topic><topic>Boron fibers</topic><topic>Boron nitride</topic><topic>Carbon fibers</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Decay</topic><topic>Diffusion electrodes</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Ethanol</topic><topic>Ethanol electrooxidation reaction</topic><topic>Heavy metals</topic><topic>Microfibers</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxygen reduction reaction</topic><topic>Palladium</topic><topic>Palladium nanoparticles</topic><topic>Reduction</topic><topic>Sodium hydroxide</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Matthieu</creatorcontrib><creatorcontrib>Tuleushova, Nazym</creatorcontrib><creatorcontrib>Zgheib, Joelle</creatorcontrib><creatorcontrib>Lamboux, Cassandre</creatorcontrib><creatorcontrib>Iatsunskyi, Igor</creatorcontrib><creatorcontrib>Coy, Emerson</creatorcontrib><creatorcontrib>Flaud, Valerie</creatorcontrib><creatorcontrib>Tingry, Sophie</creatorcontrib><creatorcontrib>Cornu, David</creatorcontrib><creatorcontrib>Miele, Philippe</creatorcontrib><creatorcontrib>Bechelany, Mikhael</creatorcontrib><creatorcontrib>Holade, Yaovi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Matthieu</au><au>Tuleushova, Nazym</au><au>Zgheib, Joelle</au><au>Lamboux, Cassandre</au><au>Iatsunskyi, Igor</au><au>Coy, Emerson</au><au>Flaud, Valerie</au><au>Tingry, Sophie</au><au>Cornu, David</au><au>Miele, Philippe</au><au>Bechelany, Mikhael</au><au>Holade, Yaovi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>257</volume><spage>117917</spage><pages>117917-</pages><artnum>117917</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Decrease catalysts loading below ten micrograms per square centimeter of electrode.•Bridging boron nitride between palladium and carbon fosters kinetics and stability.•Multifunctional catalyst for both oxygen reduction and C2 alcohol electrooxidation.•Atomic layer deposition enables to engineer highly active palladium nanocomposites. Significant reduction of the amount of precious metals in catalysts is a major challenge. We report the synthesis of high-performance carbon paper-boron nitride-palladium (CP-BN-Pd) electrocatalytic electrodes. The nanocatalysts consist of Pd nanoparticles of 5 nm supported on an ultrathin BN film prepared by atomic layer deposition (ALD), covering the microfibers of gas-diffusion electrodes (GDL). These electrodes present significantly enhanced electrocatalytic performance towards oxygen reduction (ORR) and C2 alcohols oxidation reactions and outperform the reported data for those alcohols in alkaline media, reaching a peak current of 17 amps/mgPd in 1 M NaOH + 1 M ethanol. The ageing tests reveal excellent stability of the electrochemically active surface area even after 1000 cycles, and the ethanol oxidation activity shows negligible decay of 1% whereas commercial Pd/C show prominent decay of 44%. The use of this heterogeneous active interface opens a new route for the development of efficient and low-metal content nanocatalysts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.117917</doi><orcidid>https://orcid.org/0000-0002-2913-2846</orcidid><orcidid>https://orcid.org/0000-0002-4149-9720</orcidid><orcidid>https://orcid.org/0000-0002-8806-568X</orcidid><orcidid>https://orcid.org/0000-0001-9420-7376</orcidid><orcidid>https://orcid.org/0000-0002-5205-3038</orcidid><orcidid>https://orcid.org/0000-0001-5459-4770</orcidid><orcidid>https://orcid.org/0000-0001-6311-9330</orcidid><orcidid>https://orcid.org/0000-0003-2490-6168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-11, Vol.257, p.117917, Article 117917
issn 0926-3373
1873-3883
language eng
recordid cdi_hal_primary_oai_HAL_hal_02278669v1
source Access via ScienceDirect (Elsevier)
subjects Aging
Alcohol
Alcohols
Atomic layer deposition
Atomic layer epitaxy
Boron
Boron fibers
Boron nitride
Carbon fibers
Catalysts
Chemical Sciences
Decay
Diffusion electrodes
Diffusion layers
Electrodes
Ethanol
Ethanol electrooxidation reaction
Heavy metals
Microfibers
Nanoparticles
Oxidation
Oxygen reduction reaction
Palladium
Palladium nanoparticles
Reduction
Sodium hydroxide
Surface stability
title Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20electrocatalytic%20performance%20triggered%20by%20atomically%20bridged%20boron%20nitride%20between%20palladium%20nanoparticles%20and%20carbon%20fibers%20in%20gas-diffusion%20electrodes&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Weber,%20Matthieu&rft.date=2019-11-15&rft.volume=257&rft.spage=117917&rft.pages=117917-&rft.artnum=117917&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.117917&rft_dat=%3Cproquest_hal_p%3E2283281619%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283281619&rft_id=info:pmid/&rft_els_id=S0926337319306630&rfr_iscdi=true