Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations

The Cassini mission unveiled the intense and diverse activity in Saturn's atmosphere: banded jets, waves, vortices, equatorial oscillations. To set the path towards a better understanding of those phenomena, we performed high-resolution multi-annual numerical simulations of Saturn's atmosp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2020-01, Vol.335, p.113377, Article 113377
Hauptverfasser: Spiga, Aymeric, Guerlet, Sandrine, Millour, Ehouarn, Indurain, Mikel, Meurdesoif, Yann, Cabanes, Simon, Dubos, Thomas, Leconte, Jérémy, Boissinot, Alexandre, Lebonnois, Sébastien, Sylvestre, Mélody, Fouchet, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113377
container_title Icarus (New York, N.Y. 1962)
container_volume 335
creator Spiga, Aymeric
Guerlet, Sandrine
Millour, Ehouarn
Indurain, Mikel
Meurdesoif, Yann
Cabanes, Simon
Dubos, Thomas
Leconte, Jérémy
Boissinot, Alexandre
Lebonnois, Sébastien
Sylvestre, Mélody
Fouchet, Thierry
description The Cassini mission unveiled the intense and diverse activity in Saturn's atmosphere: banded jets, waves, vortices, equatorial oscillations. To set the path towards a better understanding of those phenomena, we performed high-resolution multi-annual numerical simulations of Saturn's atmospheric dynamics. We built a new Global Climate Model [GCM] for Saturn, named the Saturn DYNAMICO GCM, by combining a radiative-seasonal model tailored for Saturn to a hydrodynamical solver based on an icosahedral grid suitable for massively-parallel architectures. The impact of numerical dissipation, and the conservation of angular momentum, are examined in the model before a reference simulation employing the Saturn DYNAMICO GCM with a 1/2° latitude-longitude resolution is considered for analysis. Mid-latitude banded jets showing similarity with observations are reproduced by our model. Those jets are accelerated and maintained by eddy momentum transfers to the mean flow, with the magnitude of momentum fluxes compliant with the observed values. The eddy activity is not regularly distributed with time, but appears as bursts; both barotropic and baroclinic instabilities could play a role in the eddy activity. The steady-state latitude of occurrence of jets is controlled by poleward migration during the spin-up of our model. At the equator, a weakly-superrotating tropospheric jet and vertically-stacked alternating stratospheric jets are obtained in our GCM simulations. The model produces Yanai (Rossby-gravity), Rossby and Kelvin waves at the equator, as well as extratropical Rossby waves, and large-scale vortices in polar regions. Challenges remain to reproduce Saturn's powerful superrotating jet and hexagon-shaped circumpolar jet in the troposphere, and downward-propagating equatorial oscillation in the stratosphere. •A new Global Climate Model for Saturn with radiative transfer•High-resolution numerical simulations on a duration of 15 Saturn years•Results on zonal jets, waves, eddies in Saturn's troposphere
doi_str_mv 10.1016/j.icarus.2019.07.011
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02278447v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103518306912</els_id><sourcerecordid>oai_HAL_hal_02278447v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-7cf288c4ac29cbda8d41415e064fe75a6f7261df1767bbe04a6f58a9911cb9de3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKf_wIe8iQ-tN13atD4IY-g2mCiozyFN0zUzbUbSDvbvzaj46NOFc8-53PMhdEsgJkCyh12spXCDjxMgRQwsBkLO0IRAAVGS0dk5mkDYRARm6SW68n4HAGlezCboe2lsKQyWRreiV7i1lTK622Jb4w_RD66781j0rfX7RjkV43fherxeP-LXwfQ6El03hHijt03klLdm6LXtcHXsRBueMtjrdjDiJPprdFEL49XN75yir5fnz8Uq2rwt14v5JpI0TfqIyTrJc0mFTApZViKvKKEkVZDRWrFUZDVLMlLVhGWsLBXQoKS5KApCZFlUajZF9-PdRhi-d6GYO3IrNF_NN_ykQZKwnFJ2IMFLR6901nun6r8AAX6Cy3d8hMtPcDkwHuCG2NMYU6HHQSvHvdSqk6rSTsmeV1b_f-AH3bqGMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Spiga, Aymeric ; Guerlet, Sandrine ; Millour, Ehouarn ; Indurain, Mikel ; Meurdesoif, Yann ; Cabanes, Simon ; Dubos, Thomas ; Leconte, Jérémy ; Boissinot, Alexandre ; Lebonnois, Sébastien ; Sylvestre, Mélody ; Fouchet, Thierry</creator><creatorcontrib>Spiga, Aymeric ; Guerlet, Sandrine ; Millour, Ehouarn ; Indurain, Mikel ; Meurdesoif, Yann ; Cabanes, Simon ; Dubos, Thomas ; Leconte, Jérémy ; Boissinot, Alexandre ; Lebonnois, Sébastien ; Sylvestre, Mélody ; Fouchet, Thierry</creatorcontrib><description>The Cassini mission unveiled the intense and diverse activity in Saturn's atmosphere: banded jets, waves, vortices, equatorial oscillations. To set the path towards a better understanding of those phenomena, we performed high-resolution multi-annual numerical simulations of Saturn's atmospheric dynamics. We built a new Global Climate Model [GCM] for Saturn, named the Saturn DYNAMICO GCM, by combining a radiative-seasonal model tailored for Saturn to a hydrodynamical solver based on an icosahedral grid suitable for massively-parallel architectures. The impact of numerical dissipation, and the conservation of angular momentum, are examined in the model before a reference simulation employing the Saturn DYNAMICO GCM with a 1/2° latitude-longitude resolution is considered for analysis. Mid-latitude banded jets showing similarity with observations are reproduced by our model. Those jets are accelerated and maintained by eddy momentum transfers to the mean flow, with the magnitude of momentum fluxes compliant with the observed values. The eddy activity is not regularly distributed with time, but appears as bursts; both barotropic and baroclinic instabilities could play a role in the eddy activity. The steady-state latitude of occurrence of jets is controlled by poleward migration during the spin-up of our model. At the equator, a weakly-superrotating tropospheric jet and vertically-stacked alternating stratospheric jets are obtained in our GCM simulations. The model produces Yanai (Rossby-gravity), Rossby and Kelvin waves at the equator, as well as extratropical Rossby waves, and large-scale vortices in polar regions. Challenges remain to reproduce Saturn's powerful superrotating jet and hexagon-shaped circumpolar jet in the troposphere, and downward-propagating equatorial oscillation in the stratosphere. •A new Global Climate Model for Saturn with radiative transfer•High-resolution numerical simulations on a duration of 15 Saturn years•Results on zonal jets, waves, eddies in Saturn's troposphere</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2019.07.011</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Astrophysics ; Earth and Planetary Astrophysics ; Sciences of the Universe</subject><ispartof>Icarus (New York, N.Y. 1962), 2020-01, Vol.335, p.113377, Article 113377</ispartof><rights>2019 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-7cf288c4ac29cbda8d41415e064fe75a6f7261df1767bbe04a6f58a9911cb9de3</citedby><cites>FETCH-LOGICAL-c452t-7cf288c4ac29cbda8d41415e064fe75a6f7261df1767bbe04a6f58a9911cb9de3</cites><orcidid>0000-0002-2390-8164 ; 0000-0001-9040-8285 ; 0000-0001-7086-8882 ; 0000-0002-6776-6268 ; 0000-0002-3555-480X ; 0000-0003-4808-9203 ; 0000-0001-5019-899X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icarus.2019.07.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02278447$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiga, Aymeric</creatorcontrib><creatorcontrib>Guerlet, Sandrine</creatorcontrib><creatorcontrib>Millour, Ehouarn</creatorcontrib><creatorcontrib>Indurain, Mikel</creatorcontrib><creatorcontrib>Meurdesoif, Yann</creatorcontrib><creatorcontrib>Cabanes, Simon</creatorcontrib><creatorcontrib>Dubos, Thomas</creatorcontrib><creatorcontrib>Leconte, Jérémy</creatorcontrib><creatorcontrib>Boissinot, Alexandre</creatorcontrib><creatorcontrib>Lebonnois, Sébastien</creatorcontrib><creatorcontrib>Sylvestre, Mélody</creatorcontrib><creatorcontrib>Fouchet, Thierry</creatorcontrib><title>Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations</title><title>Icarus (New York, N.Y. 1962)</title><description>The Cassini mission unveiled the intense and diverse activity in Saturn's atmosphere: banded jets, waves, vortices, equatorial oscillations. To set the path towards a better understanding of those phenomena, we performed high-resolution multi-annual numerical simulations of Saturn's atmospheric dynamics. We built a new Global Climate Model [GCM] for Saturn, named the Saturn DYNAMICO GCM, by combining a radiative-seasonal model tailored for Saturn to a hydrodynamical solver based on an icosahedral grid suitable for massively-parallel architectures. The impact of numerical dissipation, and the conservation of angular momentum, are examined in the model before a reference simulation employing the Saturn DYNAMICO GCM with a 1/2° latitude-longitude resolution is considered for analysis. Mid-latitude banded jets showing similarity with observations are reproduced by our model. Those jets are accelerated and maintained by eddy momentum transfers to the mean flow, with the magnitude of momentum fluxes compliant with the observed values. The eddy activity is not regularly distributed with time, but appears as bursts; both barotropic and baroclinic instabilities could play a role in the eddy activity. The steady-state latitude of occurrence of jets is controlled by poleward migration during the spin-up of our model. At the equator, a weakly-superrotating tropospheric jet and vertically-stacked alternating stratospheric jets are obtained in our GCM simulations. The model produces Yanai (Rossby-gravity), Rossby and Kelvin waves at the equator, as well as extratropical Rossby waves, and large-scale vortices in polar regions. Challenges remain to reproduce Saturn's powerful superrotating jet and hexagon-shaped circumpolar jet in the troposphere, and downward-propagating equatorial oscillation in the stratosphere. •A new Global Climate Model for Saturn with radiative transfer•High-resolution numerical simulations on a duration of 15 Saturn years•Results on zonal jets, waves, eddies in Saturn's troposphere</description><subject>Astrophysics</subject><subject>Earth and Planetary Astrophysics</subject><subject>Sciences of the Universe</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKf_wIe8iQ-tN13atD4IY-g2mCiozyFN0zUzbUbSDvbvzaj46NOFc8-53PMhdEsgJkCyh12spXCDjxMgRQwsBkLO0IRAAVGS0dk5mkDYRARm6SW68n4HAGlezCboe2lsKQyWRreiV7i1lTK622Jb4w_RD66781j0rfX7RjkV43fherxeP-LXwfQ6El03hHijt03klLdm6LXtcHXsRBueMtjrdjDiJPprdFEL49XN75yir5fnz8Uq2rwt14v5JpI0TfqIyTrJc0mFTApZViKvKKEkVZDRWrFUZDVLMlLVhGWsLBXQoKS5KApCZFlUajZF9-PdRhi-d6GYO3IrNF_NN_ykQZKwnFJ2IMFLR6901nun6r8AAX6Cy3d8hMtPcDkwHuCG2NMYU6HHQSvHvdSqk6rSTsmeV1b_f-AH3bqGMg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Spiga, Aymeric</creator><creator>Guerlet, Sandrine</creator><creator>Millour, Ehouarn</creator><creator>Indurain, Mikel</creator><creator>Meurdesoif, Yann</creator><creator>Cabanes, Simon</creator><creator>Dubos, Thomas</creator><creator>Leconte, Jérémy</creator><creator>Boissinot, Alexandre</creator><creator>Lebonnois, Sébastien</creator><creator>Sylvestre, Mélody</creator><creator>Fouchet, Thierry</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2390-8164</orcidid><orcidid>https://orcid.org/0000-0001-9040-8285</orcidid><orcidid>https://orcid.org/0000-0001-7086-8882</orcidid><orcidid>https://orcid.org/0000-0002-6776-6268</orcidid><orcidid>https://orcid.org/0000-0002-3555-480X</orcidid><orcidid>https://orcid.org/0000-0003-4808-9203</orcidid><orcidid>https://orcid.org/0000-0001-5019-899X</orcidid></search><sort><creationdate>20200101</creationdate><title>Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations</title><author>Spiga, Aymeric ; Guerlet, Sandrine ; Millour, Ehouarn ; Indurain, Mikel ; Meurdesoif, Yann ; Cabanes, Simon ; Dubos, Thomas ; Leconte, Jérémy ; Boissinot, Alexandre ; Lebonnois, Sébastien ; Sylvestre, Mélody ; Fouchet, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-7cf288c4ac29cbda8d41415e064fe75a6f7261df1767bbe04a6f58a9911cb9de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Earth and Planetary Astrophysics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiga, Aymeric</creatorcontrib><creatorcontrib>Guerlet, Sandrine</creatorcontrib><creatorcontrib>Millour, Ehouarn</creatorcontrib><creatorcontrib>Indurain, Mikel</creatorcontrib><creatorcontrib>Meurdesoif, Yann</creatorcontrib><creatorcontrib>Cabanes, Simon</creatorcontrib><creatorcontrib>Dubos, Thomas</creatorcontrib><creatorcontrib>Leconte, Jérémy</creatorcontrib><creatorcontrib>Boissinot, Alexandre</creatorcontrib><creatorcontrib>Lebonnois, Sébastien</creatorcontrib><creatorcontrib>Sylvestre, Mélody</creatorcontrib><creatorcontrib>Fouchet, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiga, Aymeric</au><au>Guerlet, Sandrine</au><au>Millour, Ehouarn</au><au>Indurain, Mikel</au><au>Meurdesoif, Yann</au><au>Cabanes, Simon</au><au>Dubos, Thomas</au><au>Leconte, Jérémy</au><au>Boissinot, Alexandre</au><au>Lebonnois, Sébastien</au><au>Sylvestre, Mélody</au><au>Fouchet, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>335</volume><spage>113377</spage><pages>113377-</pages><artnum>113377</artnum><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>The Cassini mission unveiled the intense and diverse activity in Saturn's atmosphere: banded jets, waves, vortices, equatorial oscillations. To set the path towards a better understanding of those phenomena, we performed high-resolution multi-annual numerical simulations of Saturn's atmospheric dynamics. We built a new Global Climate Model [GCM] for Saturn, named the Saturn DYNAMICO GCM, by combining a radiative-seasonal model tailored for Saturn to a hydrodynamical solver based on an icosahedral grid suitable for massively-parallel architectures. The impact of numerical dissipation, and the conservation of angular momentum, are examined in the model before a reference simulation employing the Saturn DYNAMICO GCM with a 1/2° latitude-longitude resolution is considered for analysis. Mid-latitude banded jets showing similarity with observations are reproduced by our model. Those jets are accelerated and maintained by eddy momentum transfers to the mean flow, with the magnitude of momentum fluxes compliant with the observed values. The eddy activity is not regularly distributed with time, but appears as bursts; both barotropic and baroclinic instabilities could play a role in the eddy activity. The steady-state latitude of occurrence of jets is controlled by poleward migration during the spin-up of our model. At the equator, a weakly-superrotating tropospheric jet and vertically-stacked alternating stratospheric jets are obtained in our GCM simulations. The model produces Yanai (Rossby-gravity), Rossby and Kelvin waves at the equator, as well as extratropical Rossby waves, and large-scale vortices in polar regions. Challenges remain to reproduce Saturn's powerful superrotating jet and hexagon-shaped circumpolar jet in the troposphere, and downward-propagating equatorial oscillation in the stratosphere. •A new Global Climate Model for Saturn with radiative transfer•High-resolution numerical simulations on a duration of 15 Saturn years•Results on zonal jets, waves, eddies in Saturn's troposphere</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2019.07.011</doi><orcidid>https://orcid.org/0000-0002-2390-8164</orcidid><orcidid>https://orcid.org/0000-0001-9040-8285</orcidid><orcidid>https://orcid.org/0000-0001-7086-8882</orcidid><orcidid>https://orcid.org/0000-0002-6776-6268</orcidid><orcidid>https://orcid.org/0000-0002-3555-480X</orcidid><orcidid>https://orcid.org/0000-0003-4808-9203</orcidid><orcidid>https://orcid.org/0000-0001-5019-899X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2020-01, Vol.335, p.113377, Article 113377
issn 0019-1035
1090-2643
language eng
recordid cdi_hal_primary_oai_HAL_hal_02278447v1
source Access via ScienceDirect (Elsevier)
subjects Astrophysics
Earth and Planetary Astrophysics
Sciences of the Universe
title Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20climate%20modeling%20of%20Saturn's%20atmosphere.%20Part%20II:%20Multi-annual%20high-resolution%20dynamical%20simulations&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Spiga,%20Aymeric&rft.date=2020-01-01&rft.volume=335&rft.spage=113377&rft.pages=113377-&rft.artnum=113377&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/j.icarus.2019.07.011&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02278447v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0019103518306912&rfr_iscdi=true