Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties

Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-09, Vol.11 (36), p.32623-32632
Hauptverfasser: Abdallah, Maya, Martin, Marta, El Tahchi, Mario R, Balme, Sebastien, Faour, Wissam H, Varga, Béla, Cloitre, Thierry, Páll, Orsolya, Cuisinier, Frédéric J. G, Gergely, Csilla, Bassil, Maria J, Bechelany, Mikhael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32632
container_issue 36
container_start_page 32623
container_title ACS applied materials & interfaces
container_volume 11
creator Abdallah, Maya
Martin, Marta
El Tahchi, Mario R
Balme, Sebastien
Faour, Wissam H
Varga, Béla
Cloitre, Thierry
Páll, Orsolya
Cuisinier, Frédéric J. G
Gergely, Csilla
Bassil, Maria J
Bechelany, Mikhael
description Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.
doi_str_mv 10.1021/acsami.9b09337
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02274931v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275948296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</originalsourceid><addsrcrecordid>eNp10cFv2yAUBnA0bVq7btcdJ45r1WSAwTbHqlqXSqkWab0jDI_GFQEP7EreXz8qZ7nt9BD83nfgQ-gzJWtKGP2mTdaHfi07IquqeYPOqeR81TLB3p7OnJ-hDzk_E1JXjIj36KyinHEqxTl6uQ_OTxAM4OjwZrYp-vkPWLwrU5s0-xJvYXl5Ao9_jb1zAXLGMRRko5lHwA8xDfvo49N8jXd7CHGcB7jGOlj8AGavQ2-0x7sUB0hjD_kjeue0z_DpOC_Q4933x9vNavvzx_3tzXalOeHjSjBjSastEZVjVDROUN1yWdumbRpJCWXcdACOCk1rLQvvqg4kreuusUxXF-hyid1rr4bUH3SaVdS92txs1esdYazhsqIvtNivix1S_D1BHtWhzwa81wHilFWRQvKWybrQ9UJNijkncKdsStRrLWqpRR1rKQtfjtlTdwB74v96KOBqAWVRPccphfIr_0v7C2kamGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275948296</pqid></control><display><type>article</type><title>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</title><source>MEDLINE</source><source>ACS Publications</source><creator>Abdallah, Maya ; Martin, Marta ; El Tahchi, Mario R ; Balme, Sebastien ; Faour, Wissam H ; Varga, Béla ; Cloitre, Thierry ; Páll, Orsolya ; Cuisinier, Frédéric J. G ; Gergely, Csilla ; Bassil, Maria J ; Bechelany, Mikhael</creator><creatorcontrib>Abdallah, Maya ; Martin, Marta ; El Tahchi, Mario R ; Balme, Sebastien ; Faour, Wissam H ; Varga, Béla ; Cloitre, Thierry ; Páll, Orsolya ; Cuisinier, Frédéric J. G ; Gergely, Csilla ; Bassil, Maria J ; Bechelany, Mikhael</creatorcontrib><description>Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b09337</identifier><identifier>PMID: 31424195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Acrylic Resins - pharmacology ; Biological Physics ; Biomechanical Phenomena ; Calorimetry, Differential Scanning ; Cell Line ; Cell Shape - drug effects ; Elastic Modulus ; Elasticity ; Humans ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Hydrolysis ; Phenotype ; Physics ; Podocytes - cytology ; Podocytes - drug effects ; Tissue Scaffolds - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2019-09, Vol.11 (36), p.32623-32632</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</citedby><cites>FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</cites><orcidid>0000-0002-2913-2846 ; 0000-0002-6735-794X ; 0000-0003-0779-3384 ; 0000-0001-6058-4050 ; 0000-0001-8631-5334 ; 0000-0001-6870-0490 ; 0000-0003-1229-6761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b09337$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b09337$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31424195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02274931$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdallah, Maya</creatorcontrib><creatorcontrib>Martin, Marta</creatorcontrib><creatorcontrib>El Tahchi, Mario R</creatorcontrib><creatorcontrib>Balme, Sebastien</creatorcontrib><creatorcontrib>Faour, Wissam H</creatorcontrib><creatorcontrib>Varga, Béla</creatorcontrib><creatorcontrib>Cloitre, Thierry</creatorcontrib><creatorcontrib>Páll, Orsolya</creatorcontrib><creatorcontrib>Cuisinier, Frédéric J. G</creatorcontrib><creatorcontrib>Gergely, Csilla</creatorcontrib><creatorcontrib>Bassil, Maria J</creatorcontrib><creatorcontrib>Bechelany, Mikhael</creatorcontrib><title>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.</description><subject>Acrylic Resins - chemistry</subject><subject>Acrylic Resins - pharmacology</subject><subject>Biological Physics</subject><subject>Biomechanical Phenomena</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cell Line</subject><subject>Cell Shape - drug effects</subject><subject>Elastic Modulus</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrolysis</subject><subject>Phenotype</subject><subject>Physics</subject><subject>Podocytes - cytology</subject><subject>Podocytes - drug effects</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10cFv2yAUBnA0bVq7btcdJ45r1WSAwTbHqlqXSqkWab0jDI_GFQEP7EreXz8qZ7nt9BD83nfgQ-gzJWtKGP2mTdaHfi07IquqeYPOqeR81TLB3p7OnJ-hDzk_E1JXjIj36KyinHEqxTl6uQ_OTxAM4OjwZrYp-vkPWLwrU5s0-xJvYXl5Ao9_jb1zAXLGMRRko5lHwA8xDfvo49N8jXd7CHGcB7jGOlj8AGavQ2-0x7sUB0hjD_kjeue0z_DpOC_Q4933x9vNavvzx_3tzXalOeHjSjBjSastEZVjVDROUN1yWdumbRpJCWXcdACOCk1rLQvvqg4kreuusUxXF-hyid1rr4bUH3SaVdS92txs1esdYazhsqIvtNivix1S_D1BHtWhzwa81wHilFWRQvKWybrQ9UJNijkncKdsStRrLWqpRR1rKQtfjtlTdwB74v96KOBqAWVRPccphfIr_0v7C2kamGU</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Abdallah, Maya</creator><creator>Martin, Marta</creator><creator>El Tahchi, Mario R</creator><creator>Balme, Sebastien</creator><creator>Faour, Wissam H</creator><creator>Varga, Béla</creator><creator>Cloitre, Thierry</creator><creator>Páll, Orsolya</creator><creator>Cuisinier, Frédéric J. G</creator><creator>Gergely, Csilla</creator><creator>Bassil, Maria J</creator><creator>Bechelany, Mikhael</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2913-2846</orcidid><orcidid>https://orcid.org/0000-0002-6735-794X</orcidid><orcidid>https://orcid.org/0000-0003-0779-3384</orcidid><orcidid>https://orcid.org/0000-0001-6058-4050</orcidid><orcidid>https://orcid.org/0000-0001-8631-5334</orcidid><orcidid>https://orcid.org/0000-0001-6870-0490</orcidid><orcidid>https://orcid.org/0000-0003-1229-6761</orcidid></search><sort><creationdate>20190911</creationdate><title>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</title><author>Abdallah, Maya ; Martin, Marta ; El Tahchi, Mario R ; Balme, Sebastien ; Faour, Wissam H ; Varga, Béla ; Cloitre, Thierry ; Páll, Orsolya ; Cuisinier, Frédéric J. G ; Gergely, Csilla ; Bassil, Maria J ; Bechelany, Mikhael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Acrylic Resins - pharmacology</topic><topic>Biological Physics</topic><topic>Biomechanical Phenomena</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cell Line</topic><topic>Cell Shape - drug effects</topic><topic>Elastic Modulus</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrolysis</topic><topic>Phenotype</topic><topic>Physics</topic><topic>Podocytes - cytology</topic><topic>Podocytes - drug effects</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdallah, Maya</creatorcontrib><creatorcontrib>Martin, Marta</creatorcontrib><creatorcontrib>El Tahchi, Mario R</creatorcontrib><creatorcontrib>Balme, Sebastien</creatorcontrib><creatorcontrib>Faour, Wissam H</creatorcontrib><creatorcontrib>Varga, Béla</creatorcontrib><creatorcontrib>Cloitre, Thierry</creatorcontrib><creatorcontrib>Páll, Orsolya</creatorcontrib><creatorcontrib>Cuisinier, Frédéric J. G</creatorcontrib><creatorcontrib>Gergely, Csilla</creatorcontrib><creatorcontrib>Bassil, Maria J</creatorcontrib><creatorcontrib>Bechelany, Mikhael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdallah, Maya</au><au>Martin, Marta</au><au>El Tahchi, Mario R</au><au>Balme, Sebastien</au><au>Faour, Wissam H</au><au>Varga, Béla</au><au>Cloitre, Thierry</au><au>Páll, Orsolya</au><au>Cuisinier, Frédéric J. G</au><au>Gergely, Csilla</au><au>Bassil, Maria J</au><au>Bechelany, Mikhael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-11</date><risdate>2019</risdate><volume>11</volume><issue>36</issue><spage>32623</spage><epage>32632</epage><pages>32623-32632</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31424195</pmid><doi>10.1021/acsami.9b09337</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2913-2846</orcidid><orcidid>https://orcid.org/0000-0002-6735-794X</orcidid><orcidid>https://orcid.org/0000-0003-0779-3384</orcidid><orcidid>https://orcid.org/0000-0001-6058-4050</orcidid><orcidid>https://orcid.org/0000-0001-8631-5334</orcidid><orcidid>https://orcid.org/0000-0001-6870-0490</orcidid><orcidid>https://orcid.org/0000-0003-1229-6761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-09, Vol.11 (36), p.32623-32632
issn 1944-8244
1944-8252
language eng
recordid cdi_hal_primary_oai_HAL_hal_02274931v1
source MEDLINE; ACS Publications
subjects Acrylic Resins - chemistry
Acrylic Resins - pharmacology
Biological Physics
Biomechanical Phenomena
Calorimetry, Differential Scanning
Cell Line
Cell Shape - drug effects
Elastic Modulus
Elasticity
Humans
Hydrogels - chemistry
Hydrogels - pharmacology
Hydrolysis
Phenotype
Physics
Podocytes - cytology
Podocytes - drug effects
Tissue Scaffolds - chemistry
title Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Hydrolyzed%20Polyacrylamide%20Hydrogel%20Stiffness%20on%20Podocyte%20Morphology,%20Phenotype,%20and%20Mechanical%20Properties&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Abdallah,%20Maya&rft.date=2019-09-11&rft.volume=11&rft.issue=36&rft.spage=32623&rft.epage=32632&rft.pages=32623-32632&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b09337&rft_dat=%3Cproquest_hal_p%3E2275948296%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275948296&rft_id=info:pmid/31424195&rfr_iscdi=true