Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties
Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barri...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-09, Vol.11 (36), p.32623-32632 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32632 |
---|---|
container_issue | 36 |
container_start_page | 32623 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Abdallah, Maya Martin, Marta El Tahchi, Mario R Balme, Sebastien Faour, Wissam H Varga, Béla Cloitre, Thierry Páll, Orsolya Cuisinier, Frédéric J. G Gergely, Csilla Bassil, Maria J Bechelany, Mikhael |
description | Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states. |
doi_str_mv | 10.1021/acsami.9b09337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02274931v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275948296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</originalsourceid><addsrcrecordid>eNp10cFv2yAUBnA0bVq7btcdJ45r1WSAwTbHqlqXSqkWab0jDI_GFQEP7EreXz8qZ7nt9BD83nfgQ-gzJWtKGP2mTdaHfi07IquqeYPOqeR81TLB3p7OnJ-hDzk_E1JXjIj36KyinHEqxTl6uQ_OTxAM4OjwZrYp-vkPWLwrU5s0-xJvYXl5Ao9_jb1zAXLGMRRko5lHwA8xDfvo49N8jXd7CHGcB7jGOlj8AGavQ2-0x7sUB0hjD_kjeue0z_DpOC_Q4933x9vNavvzx_3tzXalOeHjSjBjSastEZVjVDROUN1yWdumbRpJCWXcdACOCk1rLQvvqg4kreuusUxXF-hyid1rr4bUH3SaVdS92txs1esdYazhsqIvtNivix1S_D1BHtWhzwa81wHilFWRQvKWybrQ9UJNijkncKdsStRrLWqpRR1rKQtfjtlTdwB74v96KOBqAWVRPccphfIr_0v7C2kamGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275948296</pqid></control><display><type>article</type><title>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</title><source>MEDLINE</source><source>ACS Publications</source><creator>Abdallah, Maya ; Martin, Marta ; El Tahchi, Mario R ; Balme, Sebastien ; Faour, Wissam H ; Varga, Béla ; Cloitre, Thierry ; Páll, Orsolya ; Cuisinier, Frédéric J. G ; Gergely, Csilla ; Bassil, Maria J ; Bechelany, Mikhael</creator><creatorcontrib>Abdallah, Maya ; Martin, Marta ; El Tahchi, Mario R ; Balme, Sebastien ; Faour, Wissam H ; Varga, Béla ; Cloitre, Thierry ; Páll, Orsolya ; Cuisinier, Frédéric J. G ; Gergely, Csilla ; Bassil, Maria J ; Bechelany, Mikhael</creatorcontrib><description>Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b09337</identifier><identifier>PMID: 31424195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Acrylic Resins - pharmacology ; Biological Physics ; Biomechanical Phenomena ; Calorimetry, Differential Scanning ; Cell Line ; Cell Shape - drug effects ; Elastic Modulus ; Elasticity ; Humans ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Hydrolysis ; Phenotype ; Physics ; Podocytes - cytology ; Podocytes - drug effects ; Tissue Scaffolds - chemistry</subject><ispartof>ACS applied materials & interfaces, 2019-09, Vol.11 (36), p.32623-32632</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</citedby><cites>FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</cites><orcidid>0000-0002-2913-2846 ; 0000-0002-6735-794X ; 0000-0003-0779-3384 ; 0000-0001-6058-4050 ; 0000-0001-8631-5334 ; 0000-0001-6870-0490 ; 0000-0003-1229-6761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b09337$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b09337$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31424195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02274931$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdallah, Maya</creatorcontrib><creatorcontrib>Martin, Marta</creatorcontrib><creatorcontrib>El Tahchi, Mario R</creatorcontrib><creatorcontrib>Balme, Sebastien</creatorcontrib><creatorcontrib>Faour, Wissam H</creatorcontrib><creatorcontrib>Varga, Béla</creatorcontrib><creatorcontrib>Cloitre, Thierry</creatorcontrib><creatorcontrib>Páll, Orsolya</creatorcontrib><creatorcontrib>Cuisinier, Frédéric J. G</creatorcontrib><creatorcontrib>Gergely, Csilla</creatorcontrib><creatorcontrib>Bassil, Maria J</creatorcontrib><creatorcontrib>Bechelany, Mikhael</creatorcontrib><title>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.</description><subject>Acrylic Resins - chemistry</subject><subject>Acrylic Resins - pharmacology</subject><subject>Biological Physics</subject><subject>Biomechanical Phenomena</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cell Line</subject><subject>Cell Shape - drug effects</subject><subject>Elastic Modulus</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrolysis</subject><subject>Phenotype</subject><subject>Physics</subject><subject>Podocytes - cytology</subject><subject>Podocytes - drug effects</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10cFv2yAUBnA0bVq7btcdJ45r1WSAwTbHqlqXSqkWab0jDI_GFQEP7EreXz8qZ7nt9BD83nfgQ-gzJWtKGP2mTdaHfi07IquqeYPOqeR81TLB3p7OnJ-hDzk_E1JXjIj36KyinHEqxTl6uQ_OTxAM4OjwZrYp-vkPWLwrU5s0-xJvYXl5Ao9_jb1zAXLGMRRko5lHwA8xDfvo49N8jXd7CHGcB7jGOlj8AGavQ2-0x7sUB0hjD_kjeue0z_DpOC_Q4933x9vNavvzx_3tzXalOeHjSjBjSastEZVjVDROUN1yWdumbRpJCWXcdACOCk1rLQvvqg4kreuusUxXF-hyid1rr4bUH3SaVdS92txs1esdYazhsqIvtNivix1S_D1BHtWhzwa81wHilFWRQvKWybrQ9UJNijkncKdsStRrLWqpRR1rKQtfjtlTdwB74v96KOBqAWVRPccphfIr_0v7C2kamGU</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Abdallah, Maya</creator><creator>Martin, Marta</creator><creator>El Tahchi, Mario R</creator><creator>Balme, Sebastien</creator><creator>Faour, Wissam H</creator><creator>Varga, Béla</creator><creator>Cloitre, Thierry</creator><creator>Páll, Orsolya</creator><creator>Cuisinier, Frédéric J. G</creator><creator>Gergely, Csilla</creator><creator>Bassil, Maria J</creator><creator>Bechelany, Mikhael</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2913-2846</orcidid><orcidid>https://orcid.org/0000-0002-6735-794X</orcidid><orcidid>https://orcid.org/0000-0003-0779-3384</orcidid><orcidid>https://orcid.org/0000-0001-6058-4050</orcidid><orcidid>https://orcid.org/0000-0001-8631-5334</orcidid><orcidid>https://orcid.org/0000-0001-6870-0490</orcidid><orcidid>https://orcid.org/0000-0003-1229-6761</orcidid></search><sort><creationdate>20190911</creationdate><title>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</title><author>Abdallah, Maya ; Martin, Marta ; El Tahchi, Mario R ; Balme, Sebastien ; Faour, Wissam H ; Varga, Béla ; Cloitre, Thierry ; Páll, Orsolya ; Cuisinier, Frédéric J. G ; Gergely, Csilla ; Bassil, Maria J ; Bechelany, Mikhael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-52cd08ad053f2157f51a8496d7877910124cbeef15a16a952cb3be9166b7d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Acrylic Resins - pharmacology</topic><topic>Biological Physics</topic><topic>Biomechanical Phenomena</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cell Line</topic><topic>Cell Shape - drug effects</topic><topic>Elastic Modulus</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrolysis</topic><topic>Phenotype</topic><topic>Physics</topic><topic>Podocytes - cytology</topic><topic>Podocytes - drug effects</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdallah, Maya</creatorcontrib><creatorcontrib>Martin, Marta</creatorcontrib><creatorcontrib>El Tahchi, Mario R</creatorcontrib><creatorcontrib>Balme, Sebastien</creatorcontrib><creatorcontrib>Faour, Wissam H</creatorcontrib><creatorcontrib>Varga, Béla</creatorcontrib><creatorcontrib>Cloitre, Thierry</creatorcontrib><creatorcontrib>Páll, Orsolya</creatorcontrib><creatorcontrib>Cuisinier, Frédéric J. G</creatorcontrib><creatorcontrib>Gergely, Csilla</creatorcontrib><creatorcontrib>Bassil, Maria J</creatorcontrib><creatorcontrib>Bechelany, Mikhael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdallah, Maya</au><au>Martin, Marta</au><au>El Tahchi, Mario R</au><au>Balme, Sebastien</au><au>Faour, Wissam H</au><au>Varga, Béla</au><au>Cloitre, Thierry</au><au>Páll, Orsolya</au><au>Cuisinier, Frédéric J. G</au><au>Gergely, Csilla</au><au>Bassil, Maria J</au><au>Bechelany, Mikhael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-11</date><risdate>2019</risdate><volume>11</volume><issue>36</issue><spage>32623</spage><epage>32632</epage><pages>32623-32632</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration. Thus, the ECM stiffness represents an essential characteristic that controls podocyte function. Hydrolyzed Polyacrylamide (PAAm) hydrogels are smart polyelectrolyte materials. Their biophysical properties can be tuned as desired to mimic the natural ECM. Therefore, these hydrogels are investigated as new ECM-like constructs to engineer a podocyte-like basement membrane that forms with cultured human podocytes a functional glomerular-like filtration barrier. Such ECM-like PAAm hydrogel construct will provide unique opportunity to reveal podocyte cell biological responses in an in vivo-like setting by controlling the physical properties of the PAAm membranes. In this work, Hydrolyzed PAAm scaffolds having different stiffness ranging between 0.6–44 kPa are prepared. The correlation between the hydrogel structural and mechanical properties and Podocyte morphology, elasticity, cytoskeleton reorganization, and podocin expression is evaluated. Results show that hydrolyzed PAAm hydrogels promote good cell adhesion and growth and are suitable materials for the development of future 3D smart scaffolds. In addition, the hydrogel properties can be easily modulated over a wide physiological range by controlling the cross-linker concentration. Finally, tuning the hydrogel properties is an effective strategy to control the cells function. This work addressed the complexity of podocytes behavior which will further enhance our knowledge to develop a kidney-on-chip model much needed in kidney function studies in both healthy and diseased states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31424195</pmid><doi>10.1021/acsami.9b09337</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2913-2846</orcidid><orcidid>https://orcid.org/0000-0002-6735-794X</orcidid><orcidid>https://orcid.org/0000-0003-0779-3384</orcidid><orcidid>https://orcid.org/0000-0001-6058-4050</orcidid><orcidid>https://orcid.org/0000-0001-8631-5334</orcidid><orcidid>https://orcid.org/0000-0001-6870-0490</orcidid><orcidid>https://orcid.org/0000-0003-1229-6761</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-09, Vol.11 (36), p.32623-32632 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02274931v1 |
source | MEDLINE; ACS Publications |
subjects | Acrylic Resins - chemistry Acrylic Resins - pharmacology Biological Physics Biomechanical Phenomena Calorimetry, Differential Scanning Cell Line Cell Shape - drug effects Elastic Modulus Elasticity Humans Hydrogels - chemistry Hydrogels - pharmacology Hydrolysis Phenotype Physics Podocytes - cytology Podocytes - drug effects Tissue Scaffolds - chemistry |
title | Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Hydrolyzed%20Polyacrylamide%20Hydrogel%20Stiffness%20on%20Podocyte%20Morphology,%20Phenotype,%20and%20Mechanical%20Properties&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Abdallah,%20Maya&rft.date=2019-09-11&rft.volume=11&rft.issue=36&rft.spage=32623&rft.epage=32632&rft.pages=32623-32632&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b09337&rft_dat=%3Cproquest_hal_p%3E2275948296%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275948296&rft_id=info:pmid/31424195&rfr_iscdi=true |