SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification

We introduce SuperNNova, an open-source supernova photometric classification framework that leverages recent advances in deep neural networks. Our core algorithm is a recurrent neural network (RNN) that is trained to classify light curves using only photometric information. Additional information su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-01, Vol.491 (3), p.4277-4293
Hauptverfasser: Möller, A, de Boissière, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4293
container_issue 3
container_start_page 4277
container_title Monthly notices of the Royal Astronomical Society
container_volume 491
creator Möller, A
de Boissière, T
description We introduce SuperNNova, an open-source supernova photometric classification framework that leverages recent advances in deep neural networks. Our core algorithm is a recurrent neural network (RNN) that is trained to classify light curves using only photometric information. Additional information such as host-galaxy redshift can be incorporated to improve performance. We evaluate our framework using realistic supernova simulations that include survey detection. We show that our method, for the type Ia versus non-Ia supernova classification problem, reaches accuracies greater than 96.92 ± 0.09 without any redshift information and up to 99.55 ± 0.06 when redshift, either photometric or spectroscopic, is available. Further, we show that our method attains unprecedented performance for the classification of incomplete light curves, reaching accuracies >86.4 ± 0.1 (>93.5 ± 0.8) without host-galaxy redshift (with redshift information) 2 d before maximum light. In contrast with previous methods, there is no need for time-consuming feature engineering and we show that our method scales to very large data sets with a modest computing budget. In addition, we investigate often neglected pitfalls of machine learning algorithms. We show that commonly used algorithms suffer from poor calibration and overconfidence on out-of-distribution samples when applied to supernova data. We devise extensive tests to estimate the robustness of classifiers and cast the learning procedure under a Bayesian light, demonstrating a much better handling of uncertainties. We study the benefits of Bayesian RNNs for SN Ia cosmology. Our code is open sourced and available on github1.
doi_str_mv 10.1093/mnras/stz3312
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02272606v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02272606v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-cf7fc8c9c8afa155725952cfd652cd66c176f71bc81ea0083550ed9675a7d06e3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYgevfdqYqUftt31hgTFhOBBPdeh28bVpSXtgsFf764QL_MmM-88hwehS0ZvGC3FaBUS5FFuf4Rg_AgNmFCS8FKpYzSgVEhSaMZO0VnOn5TSW8HVAL2_bNYuLRZxC3cYAo5rF0iOm2Qd9glW7jumL-xjwvewc7mGcI2D2yRoumj7I1lCdhXOPSd0GGwbyLn2tYW2juEcnXhosrs45BC9PUxfJzMyf358moznxAqhW2K99rawpS3AA5NSc1lKbn2lulkpZZlWXrOlLZgDSgshJXVVqbQEXVHlxBBd7bkf0Jh1qleQdiZCbWbjuel3lHPNFVVb1nXJvmtTzDk5___AqOlVmj-V5qBS_AIR22qk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification</title><source>Oxford Journals Open Access Collection</source><creator>Möller, A ; de Boissière, T</creator><creatorcontrib>Möller, A ; de Boissière, T</creatorcontrib><description>We introduce SuperNNova, an open-source supernova photometric classification framework that leverages recent advances in deep neural networks. Our core algorithm is a recurrent neural network (RNN) that is trained to classify light curves using only photometric information. Additional information such as host-galaxy redshift can be incorporated to improve performance. We evaluate our framework using realistic supernova simulations that include survey detection. We show that our method, for the type Ia versus non-Ia supernova classification problem, reaches accuracies greater than 96.92 ± 0.09 without any redshift information and up to 99.55 ± 0.06 when redshift, either photometric or spectroscopic, is available. Further, we show that our method attains unprecedented performance for the classification of incomplete light curves, reaching accuracies &gt;86.4 ± 0.1 (&gt;93.5 ± 0.8) without host-galaxy redshift (with redshift information) 2 d before maximum light. In contrast with previous methods, there is no need for time-consuming feature engineering and we show that our method scales to very large data sets with a modest computing budget. In addition, we investigate often neglected pitfalls of machine learning algorithms. We show that commonly used algorithms suffer from poor calibration and overconfidence on out-of-distribution samples when applied to supernova data. We devise extensive tests to estimate the robustness of classifiers and cast the learning procedure under a Bayesian light, demonstrating a much better handling of uncertainties. We study the benefits of Bayesian RNNs for SN Ia cosmology. Our code is open sourced and available on github1.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz3312</identifier><language>eng</language><publisher>Oxford University Press (OUP): Policy P - Oxford Open Option A</publisher><subject>Instrumentation and Detectors ; Physics</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2020-01, Vol.491 (3), p.4277-4293</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-cf7fc8c9c8afa155725952cfd652cd66c176f71bc81ea0083550ed9675a7d06e3</citedby><cites>FETCH-LOGICAL-c337t-cf7fc8c9c8afa155725952cfd652cd66c176f71bc81ea0083550ed9675a7d06e3</cites><orcidid>0000-0001-8211-8608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02272606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Möller, A</creatorcontrib><creatorcontrib>de Boissière, T</creatorcontrib><title>SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification</title><title>Monthly notices of the Royal Astronomical Society</title><description>We introduce SuperNNova, an open-source supernova photometric classification framework that leverages recent advances in deep neural networks. Our core algorithm is a recurrent neural network (RNN) that is trained to classify light curves using only photometric information. Additional information such as host-galaxy redshift can be incorporated to improve performance. We evaluate our framework using realistic supernova simulations that include survey detection. We show that our method, for the type Ia versus non-Ia supernova classification problem, reaches accuracies greater than 96.92 ± 0.09 without any redshift information and up to 99.55 ± 0.06 when redshift, either photometric or spectroscopic, is available. Further, we show that our method attains unprecedented performance for the classification of incomplete light curves, reaching accuracies &gt;86.4 ± 0.1 (&gt;93.5 ± 0.8) without host-galaxy redshift (with redshift information) 2 d before maximum light. In contrast with previous methods, there is no need for time-consuming feature engineering and we show that our method scales to very large data sets with a modest computing budget. In addition, we investigate often neglected pitfalls of machine learning algorithms. We show that commonly used algorithms suffer from poor calibration and overconfidence on out-of-distribution samples when applied to supernova data. We devise extensive tests to estimate the robustness of classifiers and cast the learning procedure under a Bayesian light, demonstrating a much better handling of uncertainties. We study the benefits of Bayesian RNNs for SN Ia cosmology. Our code is open sourced and available on github1.</description><subject>Instrumentation and Detectors</subject><subject>Physics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYgevfdqYqUftt31hgTFhOBBPdeh28bVpSXtgsFf764QL_MmM-88hwehS0ZvGC3FaBUS5FFuf4Rg_AgNmFCS8FKpYzSgVEhSaMZO0VnOn5TSW8HVAL2_bNYuLRZxC3cYAo5rF0iOm2Qd9glW7jumL-xjwvewc7mGcI2D2yRoumj7I1lCdhXOPSd0GGwbyLn2tYW2juEcnXhosrs45BC9PUxfJzMyf358moznxAqhW2K99rawpS3AA5NSc1lKbn2lulkpZZlWXrOlLZgDSgshJXVVqbQEXVHlxBBd7bkf0Jh1qleQdiZCbWbjuel3lHPNFVVb1nXJvmtTzDk5___AqOlVmj-V5qBS_AIR22qk</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Möller, A</creator><creator>de Boissière, T</creator><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8211-8608</orcidid></search><sort><creationdate>20200101</creationdate><title>SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification</title><author>Möller, A ; de Boissière, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-cf7fc8c9c8afa155725952cfd652cd66c176f71bc81ea0083550ed9675a7d06e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Instrumentation and Detectors</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möller, A</creatorcontrib><creatorcontrib>de Boissière, T</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möller, A</au><au>de Boissière, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>491</volume><issue>3</issue><spage>4277</spage><epage>4293</epage><pages>4277-4293</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We introduce SuperNNova, an open-source supernova photometric classification framework that leverages recent advances in deep neural networks. Our core algorithm is a recurrent neural network (RNN) that is trained to classify light curves using only photometric information. Additional information such as host-galaxy redshift can be incorporated to improve performance. We evaluate our framework using realistic supernova simulations that include survey detection. We show that our method, for the type Ia versus non-Ia supernova classification problem, reaches accuracies greater than 96.92 ± 0.09 without any redshift information and up to 99.55 ± 0.06 when redshift, either photometric or spectroscopic, is available. Further, we show that our method attains unprecedented performance for the classification of incomplete light curves, reaching accuracies &gt;86.4 ± 0.1 (&gt;93.5 ± 0.8) without host-galaxy redshift (with redshift information) 2 d before maximum light. In contrast with previous methods, there is no need for time-consuming feature engineering and we show that our method scales to very large data sets with a modest computing budget. In addition, we investigate often neglected pitfalls of machine learning algorithms. We show that commonly used algorithms suffer from poor calibration and overconfidence on out-of-distribution samples when applied to supernova data. We devise extensive tests to estimate the robustness of classifiers and cast the learning procedure under a Bayesian light, demonstrating a much better handling of uncertainties. We study the benefits of Bayesian RNNs for SN Ia cosmology. Our code is open sourced and available on github1.</abstract><pub>Oxford University Press (OUP): Policy P - Oxford Open Option A</pub><doi>10.1093/mnras/stz3312</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8211-8608</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2020-01, Vol.491 (3), p.4277-4293
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_02272606v1
source Oxford Journals Open Access Collection
subjects Instrumentation and Detectors
Physics
title SuperNNova: an open-source framework for Bayesian, neural network-based supernova classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SuperNNova:%20an%20open-source%20framework%20for%20Bayesian,%20neural%20network-based%20supernova%20classification&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=M%C3%B6ller,%20A&rft.date=2020-01-01&rft.volume=491&rft.issue=3&rft.spage=4277&rft.epage=4293&rft.pages=4277-4293&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz3312&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02272606v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true