On the geometry of stability regions of Smith predictors subject to delay uncertainty

In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of mathematical control and information 2007-09, Vol.24 (3), p.411-423
Hauptverfasser: Mor rescu, Constantin-Irinel, Niculescu, Silviu-Iulian, Gu, Keqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 3
container_start_page 411
container_title IMA journal of mathematical control and information
container_volume 24
creator Mor rescu, Constantin-Irinel
Niculescu, Silviu-Iulian
Gu, Keqin
description In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.
doi_str_mv 10.1093/imamci/dnl032
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02271896v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imamci/dnl032</oup_id><sourcerecordid>1342776311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-2804b7805f44c7f7cd3389d188a4fff21f7cf2fd03fb6d65b6cadaa47ef9080c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAcR4MoOKdH78GTHqpJmibZUZxaYbCDPxAvIU0Tl9k1M0nF_vd2VLwKgS88Hh_CA-AUo0uMZvmV26iNdld126Cc7IEJphxnTAi-DyaIsCJDvKCH4CjGNUIDwGQCnpctTCsD343fmBR66C2MSVWucamHwbw738YdfNy4tILbYGqnkw8Rxq5aG51g8rA2jeph12oTknJt6o_BgVVNNCe_dwqe726fbspssbx_uLleZJoImjIiEK24QIWlVHPLdZ3nYlZjIRS11hI8IEtsjXJbsZoVFdOqVopyY2dIIJ1PwcW4u1KN3IYhQOilV06W1wu5Y4gQjsWMfeHBPRvdbfCfnYlJrn0X2uF7kmAyPMboIGWjpIOPMRj7t4qR3EWWY2Q5Rh7889H33fZf9XfaxWS-_2QVPiTjOS9k-fomycuclvRJyHn-A10ojwo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212212664</pqid></control><display><type>article</type><title>On the geometry of stability regions of Smith predictors subject to delay uncertainty</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Mor rescu, Constantin-Irinel ; Niculescu, Silviu-Iulian ; Gu, Keqin</creator><creatorcontrib>Mor rescu, Constantin-Irinel ; Niculescu, Silviu-Iulian ; Gu, Keqin</creatorcontrib><description>In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.</description><identifier>ISSN: 0265-0754</identifier><identifier>EISSN: 1471-6887</identifier><identifier>DOI: 10.1093/imamci/dnl032</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Computer Science ; delay stability ; robustness ; Smith predictor</subject><ispartof>IMA journal of mathematical control and information, 2007-09, Vol.24 (3), p.411-423</ispartof><rights>The author 2006. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2007</rights><rights>The author 2006. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-2804b7805f44c7f7cd3389d188a4fff21f7cf2fd03fb6d65b6cadaa47ef9080c3</citedby><orcidid>0000-0002-8950-8112 ; 0000-0002-3444-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02271896$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mor rescu, Constantin-Irinel</creatorcontrib><creatorcontrib>Niculescu, Silviu-Iulian</creatorcontrib><creatorcontrib>Gu, Keqin</creatorcontrib><title>On the geometry of stability regions of Smith predictors subject to delay uncertainty</title><title>IMA journal of mathematical control and information</title><description>In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.</description><subject>Computer Science</subject><subject>delay stability</subject><subject>robustness</subject><subject>Smith predictor</subject><issn>0265-0754</issn><issn>1471-6887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAcR4MoOKdH78GTHqpJmibZUZxaYbCDPxAvIU0Tl9k1M0nF_vd2VLwKgS88Hh_CA-AUo0uMZvmV26iNdld126Cc7IEJphxnTAi-DyaIsCJDvKCH4CjGNUIDwGQCnpctTCsD343fmBR66C2MSVWucamHwbw738YdfNy4tILbYGqnkw8Rxq5aG51g8rA2jeph12oTknJt6o_BgVVNNCe_dwqe726fbspssbx_uLleZJoImjIiEK24QIWlVHPLdZ3nYlZjIRS11hI8IEtsjXJbsZoVFdOqVopyY2dIIJ1PwcW4u1KN3IYhQOilV06W1wu5Y4gQjsWMfeHBPRvdbfCfnYlJrn0X2uF7kmAyPMboIGWjpIOPMRj7t4qR3EWWY2Q5Rh7889H33fZf9XfaxWS-_2QVPiTjOS9k-fomycuclvRJyHn-A10ojwo</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Mor rescu, Constantin-Irinel</creator><creator>Niculescu, Silviu-Iulian</creator><creator>Gu, Keqin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8950-8112</orcidid><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid></search><sort><creationdate>20070901</creationdate><title>On the geometry of stability regions of Smith predictors subject to delay uncertainty</title><author>Mor rescu, Constantin-Irinel ; Niculescu, Silviu-Iulian ; Gu, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-2804b7805f44c7f7cd3389d188a4fff21f7cf2fd03fb6d65b6cadaa47ef9080c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer Science</topic><topic>delay stability</topic><topic>robustness</topic><topic>Smith predictor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mor rescu, Constantin-Irinel</creatorcontrib><creatorcontrib>Niculescu, Silviu-Iulian</creatorcontrib><creatorcontrib>Gu, Keqin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IMA journal of mathematical control and information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mor rescu, Constantin-Irinel</au><au>Niculescu, Silviu-Iulian</au><au>Gu, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometry of stability regions of Smith predictors subject to delay uncertainty</atitle><jtitle>IMA journal of mathematical control and information</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>24</volume><issue>3</issue><spage>411</spage><epage>423</epage><pages>411-423</pages><issn>0265-0754</issn><eissn>1471-6887</eissn><abstract>In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imamci/dnl032</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8950-8112</orcidid><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0265-0754
ispartof IMA journal of mathematical control and information, 2007-09, Vol.24 (3), p.411-423
issn 0265-0754
1471-6887
language eng
recordid cdi_hal_primary_oai_HAL_hal_02271896v1
source Oxford University Press Journals All Titles (1996-Current)
subjects Computer Science
delay stability
robustness
Smith predictor
title On the geometry of stability regions of Smith predictors subject to delay uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometry%20of%20stability%20regions%20of%20Smith%20predictors%20subject%20to%20delay%20uncertainty&rft.jtitle=IMA%20journal%20of%20mathematical%20control%20and%20information&rft.au=Mor%20rescu,%20Constantin-Irinel&rft.date=2007-09-01&rft.volume=24&rft.issue=3&rft.spage=411&rft.epage=423&rft.pages=411-423&rft.issn=0265-0754&rft.eissn=1471-6887&rft_id=info:doi/10.1093/imamci/dnl032&rft_dat=%3Cproquest_hal_p%3E1342776311%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212212664&rft_id=info:pmid/&rft_oup_id=10.1093/imamci/dnl032&rfr_iscdi=true