On the geometry of stability regions of Smith predictors subject to delay uncertainty
In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay u...
Gespeichert in:
Veröffentlicht in: | IMA journal of mathematical control and information 2007-09, Vol.24 (3), p.411-423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | 3 |
container_start_page | 411 |
container_title | IMA journal of mathematical control and information |
container_volume | 24 |
creator | Mor rescu, Constantin-Irinel Niculescu, Silviu-Iulian Gu, Keqin |
description | In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included. |
doi_str_mv | 10.1093/imamci/dnl032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02271896v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imamci/dnl032</oup_id><sourcerecordid>1342776311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-2804b7805f44c7f7cd3389d188a4fff21f7cf2fd03fb6d65b6cadaa47ef9080c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAcR4MoOKdH78GTHqpJmibZUZxaYbCDPxAvIU0Tl9k1M0nF_vd2VLwKgS88Hh_CA-AUo0uMZvmV26iNdld126Cc7IEJphxnTAi-DyaIsCJDvKCH4CjGNUIDwGQCnpctTCsD343fmBR66C2MSVWucamHwbw738YdfNy4tILbYGqnkw8Rxq5aG51g8rA2jeph12oTknJt6o_BgVVNNCe_dwqe726fbspssbx_uLleZJoImjIiEK24QIWlVHPLdZ3nYlZjIRS11hI8IEtsjXJbsZoVFdOqVopyY2dIIJ1PwcW4u1KN3IYhQOilV06W1wu5Y4gQjsWMfeHBPRvdbfCfnYlJrn0X2uF7kmAyPMboIGWjpIOPMRj7t4qR3EWWY2Q5Rh7889H33fZf9XfaxWS-_2QVPiTjOS9k-fomycuclvRJyHn-A10ojwo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212212664</pqid></control><display><type>article</type><title>On the geometry of stability regions of Smith predictors subject to delay uncertainty</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Mor rescu, Constantin-Irinel ; Niculescu, Silviu-Iulian ; Gu, Keqin</creator><creatorcontrib>Mor rescu, Constantin-Irinel ; Niculescu, Silviu-Iulian ; Gu, Keqin</creatorcontrib><description>In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.</description><identifier>ISSN: 0265-0754</identifier><identifier>EISSN: 1471-6887</identifier><identifier>DOI: 10.1093/imamci/dnl032</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Computer Science ; delay stability ; robustness ; Smith predictor</subject><ispartof>IMA journal of mathematical control and information, 2007-09, Vol.24 (3), p.411-423</ispartof><rights>The author 2006. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2007</rights><rights>The author 2006. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-2804b7805f44c7f7cd3389d188a4fff21f7cf2fd03fb6d65b6cadaa47ef9080c3</citedby><orcidid>0000-0002-8950-8112 ; 0000-0002-3444-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02271896$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mor rescu, Constantin-Irinel</creatorcontrib><creatorcontrib>Niculescu, Silviu-Iulian</creatorcontrib><creatorcontrib>Gu, Keqin</creatorcontrib><title>On the geometry of stability regions of Smith predictors subject to delay uncertainty</title><title>IMA journal of mathematical control and information</title><description>In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.</description><subject>Computer Science</subject><subject>delay stability</subject><subject>robustness</subject><subject>Smith predictor</subject><issn>0265-0754</issn><issn>1471-6887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAcR4MoOKdH78GTHqpJmibZUZxaYbCDPxAvIU0Tl9k1M0nF_vd2VLwKgS88Hh_CA-AUo0uMZvmV26iNdld126Cc7IEJphxnTAi-DyaIsCJDvKCH4CjGNUIDwGQCnpctTCsD343fmBR66C2MSVWucamHwbw738YdfNy4tILbYGqnkw8Rxq5aG51g8rA2jeph12oTknJt6o_BgVVNNCe_dwqe726fbspssbx_uLleZJoImjIiEK24QIWlVHPLdZ3nYlZjIRS11hI8IEtsjXJbsZoVFdOqVopyY2dIIJ1PwcW4u1KN3IYhQOilV06W1wu5Y4gQjsWMfeHBPRvdbfCfnYlJrn0X2uF7kmAyPMboIGWjpIOPMRj7t4qR3EWWY2Q5Rh7889H33fZf9XfaxWS-_2QVPiTjOS9k-fomycuclvRJyHn-A10ojwo</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Mor rescu, Constantin-Irinel</creator><creator>Niculescu, Silviu-Iulian</creator><creator>Gu, Keqin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8950-8112</orcidid><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid></search><sort><creationdate>20070901</creationdate><title>On the geometry of stability regions of Smith predictors subject to delay uncertainty</title><author>Mor rescu, Constantin-Irinel ; Niculescu, Silviu-Iulian ; Gu, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-2804b7805f44c7f7cd3389d188a4fff21f7cf2fd03fb6d65b6cadaa47ef9080c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer Science</topic><topic>delay stability</topic><topic>robustness</topic><topic>Smith predictor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mor rescu, Constantin-Irinel</creatorcontrib><creatorcontrib>Niculescu, Silviu-Iulian</creatorcontrib><creatorcontrib>Gu, Keqin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IMA journal of mathematical control and information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mor rescu, Constantin-Irinel</au><au>Niculescu, Silviu-Iulian</au><au>Gu, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometry of stability regions of Smith predictors subject to delay uncertainty</atitle><jtitle>IMA journal of mathematical control and information</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>24</volume><issue>3</issue><spage>411</spage><epage>423</epage><pages>411-423</pages><issn>0265-0754</issn><eissn>1471-6887</eissn><abstract>In this paper, we present a geometric method for describing the effects of the ‘delay-induced uncertainty’ on the stability of a standard Smith predictor control scheme. The method consists of deriving the ‘stability crossing curves’ in the parameter space defined by the ‘nominal delay’ and ‘delay uncertainty’, respectively. More precisely, we start by computing the ‘crossing set’, which consists of all frequencies corresponding to all points on the stability crossing curve, and next we give their ‘complete classification’, including also the explicit characterization of the ‘directions’ in which the zeros cross the imaginary axis. This approach complements existing algebraic stability tests, and it allows some new insights in the stability analysis of such control schemes. Several illustrative examples are also included.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/imamci/dnl032</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8950-8112</orcidid><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-0754 |
ispartof | IMA journal of mathematical control and information, 2007-09, Vol.24 (3), p.411-423 |
issn | 0265-0754 1471-6887 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02271896v1 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Computer Science delay stability robustness Smith predictor |
title | On the geometry of stability regions of Smith predictors subject to delay uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometry%20of%20stability%20regions%20of%20Smith%20predictors%20subject%20to%20delay%20uncertainty&rft.jtitle=IMA%20journal%20of%20mathematical%20control%20and%20information&rft.au=Mor%20rescu,%20Constantin-Irinel&rft.date=2007-09-01&rft.volume=24&rft.issue=3&rft.spage=411&rft.epage=423&rft.pages=411-423&rft.issn=0265-0754&rft.eissn=1471-6887&rft_id=info:doi/10.1093/imamci/dnl032&rft_dat=%3Cproquest_hal_p%3E1342776311%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212212664&rft_id=info:pmid/&rft_oup_id=10.1093/imamci/dnl032&rfr_iscdi=true |