Water Balance in the Amazon Basin from a Land Surface Model Ensemble
Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestri...
Gespeichert in:
Veröffentlicht in: | Journal of Hydrometeorology, 15(6):2586-2614 15(6):2586-2614, 2014-12, Vol.15 (6), p.2586-2614 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2614 |
---|---|
container_issue | 6 |
container_start_page | 2586 |
container_title | Journal of Hydrometeorology, 15(6):2586-2614 |
container_volume | 15 |
creator | Getirana, Augusto C. V. Dutra, Emanuel Guimberteau, Matthieu Kam, Jonghun Li, Hong-Yi Decharme, Bertrand Zhang, Zhengqiu Ducharne, Agnes Boone, Aaron Balsamo, Gianpaolo Rodell, Matthew Toure, Ally M. Xue, Yongkang Peters-Lidard, Christa D. Kumar, Sujay V. Arsenault, Kristi Drapeau, Guillaume Leung, L. Ruby Ronchail, Josyane Sheffield, Justin |
description | Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoffR, and base flowB) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced withRandBand simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE)TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale. |
doi_str_mv | 10.1175/jhm-d-14-0068.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02267740v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24914915</jstor_id><sourcerecordid>24914915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-8305672c686bbaceb842de92cb0b4e29978e4a76b17bb37d9bf9ccf69980ff1f3</originalsourceid><addsrcrecordid>eNo9kc9rFDEYhgdRsLY9e1EYPOlh2nyZ_DyubXUrW3pQ0VtIMgk7y0xSk6ygf70ZRhYCCe_35Dl8b9O8BnQFwOn1YT93QwekQ4iJK3jWnAHFtOOUwPPTm_582bzK-YAQIhLEWXP7QxeX2o960sG6dgxt2bt2M-u_MdQ018CnOLe63ekwtF-PyevKPcTBTe1dyG42k7toXng9ZXf5_z5vvn-6-3az7XaPn-9vNrvOEkFLJ3pEGceWCWZMtRhB8OAktgYZ4rCUXDiiOTPAjen5II2X1nompUDeg-_Pm3erN-YyqmzH4uzexhCcLQqAMdHTCn1Yob2e1FMaZ53-qKhHtd3s1JIhjBnnBP2Gyr5f2acUfx1dLmoes3VTXYaLx6yAEcwA93zRXq-oTTHn5PzJDUgtBagv2wd1q4CopQC1yN-sP4LOWoWSssIIWF296KWo47fr-JBLTCcbrr3UQ_t_YiqIkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642612375</pqid></control><display><type>article</type><title>Water Balance in the Amazon Basin from a Land Surface Model Ensemble</title><source>Jstor Complete Legacy</source><source>NASA Technical Reports Server</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>AMS Journals (Meteorology)</source><creator>Getirana, Augusto C. V. ; Dutra, Emanuel ; Guimberteau, Matthieu ; Kam, Jonghun ; Li, Hong-Yi ; Decharme, Bertrand ; Zhang, Zhengqiu ; Ducharne, Agnes ; Boone, Aaron ; Balsamo, Gianpaolo ; Rodell, Matthew ; Toure, Ally M. ; Xue, Yongkang ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Arsenault, Kristi ; Drapeau, Guillaume ; Leung, L. Ruby ; Ronchail, Josyane ; Sheffield, Justin</creator><creatorcontrib>Getirana, Augusto C. V. ; Dutra, Emanuel ; Guimberteau, Matthieu ; Kam, Jonghun ; Li, Hong-Yi ; Decharme, Bertrand ; Zhang, Zhengqiu ; Ducharne, Agnes ; Boone, Aaron ; Balsamo, Gianpaolo ; Rodell, Matthew ; Toure, Ally M. ; Xue, Yongkang ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Arsenault, Kristi ; Drapeau, Guillaume ; Leung, L. Ruby ; Ronchail, Josyane ; Sheffield, Justin ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoffR, and base flowB) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced withRandBand simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE)TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/jhm-d-14-0068.1</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Meteorological Society</publisher><subject>Basins ; Climate models ; Datasets ; Earth Resources And Remote Sensing ; Earth Sciences ; Environmental Sciences ; Global climate models ; Hydrological modeling ; Hydrology ; Meteorology ; Precipitation ; River basins ; Sciences of the Universe ; Soil water ; Stream flow ; Surface runoff ; water balance, Amazon, land surface models</subject><ispartof>Journal of Hydrometeorology, 15(6):2586-2614, 2014-12, Vol.15 (6), p.2586-2614</ispartof><rights>2014 American Meteorological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-8305672c686bbaceb842de92cb0b4e29978e4a76b17bb37d9bf9ccf69980ff1f3</citedby><cites>FETCH-LOGICAL-c485t-8305672c686bbaceb842de92cb0b4e29978e4a76b17bb37d9bf9ccf69980ff1f3</cites><orcidid>0000-0002-0643-2643 ; 0000-0003-1901-7024 ; 0000-0002-8661-1464 ; 0000-0002-6550-3413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24914915$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24914915$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02267740$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1166835$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Getirana, Augusto C. V.</creatorcontrib><creatorcontrib>Dutra, Emanuel</creatorcontrib><creatorcontrib>Guimberteau, Matthieu</creatorcontrib><creatorcontrib>Kam, Jonghun</creatorcontrib><creatorcontrib>Li, Hong-Yi</creatorcontrib><creatorcontrib>Decharme, Bertrand</creatorcontrib><creatorcontrib>Zhang, Zhengqiu</creatorcontrib><creatorcontrib>Ducharne, Agnes</creatorcontrib><creatorcontrib>Boone, Aaron</creatorcontrib><creatorcontrib>Balsamo, Gianpaolo</creatorcontrib><creatorcontrib>Rodell, Matthew</creatorcontrib><creatorcontrib>Toure, Ally M.</creatorcontrib><creatorcontrib>Xue, Yongkang</creatorcontrib><creatorcontrib>Peters-Lidard, Christa D.</creatorcontrib><creatorcontrib>Kumar, Sujay V.</creatorcontrib><creatorcontrib>Arsenault, Kristi</creatorcontrib><creatorcontrib>Drapeau, Guillaume</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Ronchail, Josyane</creatorcontrib><creatorcontrib>Sheffield, Justin</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Water Balance in the Amazon Basin from a Land Surface Model Ensemble</title><title>Journal of Hydrometeorology, 15(6):2586-2614</title><description>Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoffR, and base flowB) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced withRandBand simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE)TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.</description><subject>Basins</subject><subject>Climate models</subject><subject>Datasets</subject><subject>Earth Resources And Remote Sensing</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Global climate models</subject><subject>Hydrological modeling</subject><subject>Hydrology</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>River basins</subject><subject>Sciences of the Universe</subject><subject>Soil water</subject><subject>Stream flow</subject><subject>Surface runoff</subject><subject>water balance, Amazon, land surface models</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNo9kc9rFDEYhgdRsLY9e1EYPOlh2nyZ_DyubXUrW3pQ0VtIMgk7y0xSk6ygf70ZRhYCCe_35Dl8b9O8BnQFwOn1YT93QwekQ4iJK3jWnAHFtOOUwPPTm_582bzK-YAQIhLEWXP7QxeX2o960sG6dgxt2bt2M-u_MdQ018CnOLe63ekwtF-PyevKPcTBTe1dyG42k7toXng9ZXf5_z5vvn-6-3az7XaPn-9vNrvOEkFLJ3pEGceWCWZMtRhB8OAktgYZ4rCUXDiiOTPAjen5II2X1nompUDeg-_Pm3erN-YyqmzH4uzexhCcLQqAMdHTCn1Yob2e1FMaZ53-qKhHtd3s1JIhjBnnBP2Gyr5f2acUfx1dLmoes3VTXYaLx6yAEcwA93zRXq-oTTHn5PzJDUgtBagv2wd1q4CopQC1yN-sP4LOWoWSssIIWF296KWo47fr-JBLTCcbrr3UQ_t_YiqIkA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Getirana, Augusto C. V.</creator><creator>Dutra, Emanuel</creator><creator>Guimberteau, Matthieu</creator><creator>Kam, Jonghun</creator><creator>Li, Hong-Yi</creator><creator>Decharme, Bertrand</creator><creator>Zhang, Zhengqiu</creator><creator>Ducharne, Agnes</creator><creator>Boone, Aaron</creator><creator>Balsamo, Gianpaolo</creator><creator>Rodell, Matthew</creator><creator>Toure, Ally M.</creator><creator>Xue, Yongkang</creator><creator>Peters-Lidard, Christa D.</creator><creator>Kumar, Sujay V.</creator><creator>Arsenault, Kristi</creator><creator>Drapeau, Guillaume</creator><creator>Leung, L. Ruby</creator><creator>Ronchail, Josyane</creator><creator>Sheffield, Justin</creator><general>American Meteorological Society</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0643-2643</orcidid><orcidid>https://orcid.org/0000-0003-1901-7024</orcidid><orcidid>https://orcid.org/0000-0002-8661-1464</orcidid><orcidid>https://orcid.org/0000-0002-6550-3413</orcidid></search><sort><creationdate>20141201</creationdate><title>Water Balance in the Amazon Basin from a Land Surface Model Ensemble</title><author>Getirana, Augusto C. V. ; Dutra, Emanuel ; Guimberteau, Matthieu ; Kam, Jonghun ; Li, Hong-Yi ; Decharme, Bertrand ; Zhang, Zhengqiu ; Ducharne, Agnes ; Boone, Aaron ; Balsamo, Gianpaolo ; Rodell, Matthew ; Toure, Ally M. ; Xue, Yongkang ; Peters-Lidard, Christa D. ; Kumar, Sujay V. ; Arsenault, Kristi ; Drapeau, Guillaume ; Leung, L. Ruby ; Ronchail, Josyane ; Sheffield, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-8305672c686bbaceb842de92cb0b4e29978e4a76b17bb37d9bf9ccf69980ff1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Basins</topic><topic>Climate models</topic><topic>Datasets</topic><topic>Earth Resources And Remote Sensing</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Global climate models</topic><topic>Hydrological modeling</topic><topic>Hydrology</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>River basins</topic><topic>Sciences of the Universe</topic><topic>Soil water</topic><topic>Stream flow</topic><topic>Surface runoff</topic><topic>water balance, Amazon, land surface models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getirana, Augusto C. V.</creatorcontrib><creatorcontrib>Dutra, Emanuel</creatorcontrib><creatorcontrib>Guimberteau, Matthieu</creatorcontrib><creatorcontrib>Kam, Jonghun</creatorcontrib><creatorcontrib>Li, Hong-Yi</creatorcontrib><creatorcontrib>Decharme, Bertrand</creatorcontrib><creatorcontrib>Zhang, Zhengqiu</creatorcontrib><creatorcontrib>Ducharne, Agnes</creatorcontrib><creatorcontrib>Boone, Aaron</creatorcontrib><creatorcontrib>Balsamo, Gianpaolo</creatorcontrib><creatorcontrib>Rodell, Matthew</creatorcontrib><creatorcontrib>Toure, Ally M.</creatorcontrib><creatorcontrib>Xue, Yongkang</creatorcontrib><creatorcontrib>Peters-Lidard, Christa D.</creatorcontrib><creatorcontrib>Kumar, Sujay V.</creatorcontrib><creatorcontrib>Arsenault, Kristi</creatorcontrib><creatorcontrib>Drapeau, Guillaume</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Ronchail, Josyane</creatorcontrib><creatorcontrib>Sheffield, Justin</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Journal of Hydrometeorology, 15(6):2586-2614</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getirana, Augusto C. V.</au><au>Dutra, Emanuel</au><au>Guimberteau, Matthieu</au><au>Kam, Jonghun</au><au>Li, Hong-Yi</au><au>Decharme, Bertrand</au><au>Zhang, Zhengqiu</au><au>Ducharne, Agnes</au><au>Boone, Aaron</au><au>Balsamo, Gianpaolo</au><au>Rodell, Matthew</au><au>Toure, Ally M.</au><au>Xue, Yongkang</au><au>Peters-Lidard, Christa D.</au><au>Kumar, Sujay V.</au><au>Arsenault, Kristi</au><au>Drapeau, Guillaume</au><au>Leung, L. Ruby</au><au>Ronchail, Josyane</au><au>Sheffield, Justin</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Balance in the Amazon Basin from a Land Surface Model Ensemble</atitle><jtitle>Journal of Hydrometeorology, 15(6):2586-2614</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>15</volume><issue>6</issue><spage>2586</spage><epage>2614</epage><pages>2586-2614</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoffR, and base flowB) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced withRandBand simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE)TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.</abstract><cop>Goddard Space Flight Center</cop><pub>American Meteorological Society</pub><doi>10.1175/jhm-d-14-0068.1</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-0643-2643</orcidid><orcidid>https://orcid.org/0000-0003-1901-7024</orcidid><orcidid>https://orcid.org/0000-0002-8661-1464</orcidid><orcidid>https://orcid.org/0000-0002-6550-3413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of Hydrometeorology, 15(6):2586-2614, 2014-12, Vol.15 (6), p.2586-2614 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02267740v1 |
source | Jstor Complete Legacy; NASA Technical Reports Server; Alma/SFX Local Collection; EZB Electronic Journals Library; AMS Journals (Meteorology) |
subjects | Basins Climate models Datasets Earth Resources And Remote Sensing Earth Sciences Environmental Sciences Global climate models Hydrological modeling Hydrology Meteorology Precipitation River basins Sciences of the Universe Soil water Stream flow Surface runoff water balance, Amazon, land surface models |
title | Water Balance in the Amazon Basin from a Land Surface Model Ensemble |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Balance%20in%20the%20Amazon%20Basin%20from%20a%20Land%20Surface%20Model%20Ensemble&rft.jtitle=Journal%20of%20Hydrometeorology,%2015(6):2586-2614&rft.au=Getirana,%20Augusto%20C.%20V.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2014-12-01&rft.volume=15&rft.issue=6&rft.spage=2586&rft.epage=2614&rft.pages=2586-2614&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/jhm-d-14-0068.1&rft_dat=%3Cjstor_osti_%3E24914915%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642612375&rft_id=info:pmid/&rft_jstor_id=24914915&rfr_iscdi=true |