Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing
Primary cilia have essential functions in vertebrate development and signaling. However, little is known about cilia function in brain morphogenesis, a process that is severely affected in human ciliopathies. Here, we study telencephalic morphogenesis in a mouse mutant for the ciliopathy gene Ftm (R...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2011-05, Vol.138 (10), p.2079-2088 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2088 |
---|---|
container_issue | 10 |
container_start_page | 2079 |
container_title | Development (Cambridge) |
container_volume | 138 |
creator | Besse, Laurianne Neti, Mariame Anselme, Isabelle Gerhardt, Christoph Rüther, Ulrich Laclef, Christine Schneider-Maunoury, Sylvie |
description | Primary cilia have essential functions in vertebrate development and signaling. However, little is known about cilia function in brain morphogenesis, a process that is severely affected in human ciliopathies. Here, we study telencephalic morphogenesis in a mouse mutant for the ciliopathy gene Ftm (Rpgrip1l). We show that the olfactory bulbs are present in an ectopic location in the telencephalon of Ftm(-/-) fetuses and do not display morphological outgrowth at the end of gestation. Investigating the developmental origin of this defect, we have established that E12.5 Ftm(-/-) telencephalic neuroepithelial cells lack primary cilia. Moreover, in the anterior telencephalon, the subpallium is expanded at the expense of the pallium, a phenotype reminiscent of Gli3 mutants. This phenotype indeed correlates with a decreased production of the short form of the Gli3 protein. Introduction of a Gli3 mutant allele encoding the short form of Gli3 into Ftm mutants rescues both telencephalic patterning and olfactory bulb morphogenesis, despite the persistence of cilia defects. Together, our results show that olfactory bulb morphogenesis depends on primary cilia and that the essential role of cilia in this process is to produce processed Gli3R required for developmental patterning. Our analysis thus provides the first in vivo demonstration that primary cilia control a developmental process via production of the short, repressor form of Gli3. Moreover, our findings shed light on the developmental origin of olfactory bulb agenesis and of other brain morphogenetic defects found in human diseases affecting the primary cilium. |
doi_str_mv | 10.1242/dev.059808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02267486v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>863902296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cfe3be3bc4d51d95b08e0ff2885c637db275239749ca854d894431fe797ab7d53</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaDZpL_0AxbfSghP9tTTHENqksJAe0rMqy-NERWu5knch375anORaGBgYfu_xhkfIR0YvGJf8csDDBVVgqHlDNkxq3QLj8JZsKCjaMgB2Ss5K-UMpFZ3W78gpZxIo7eSG_P6Zw87lp8aHGFzj07TkFJsFI04e50cXg29mtyyYpzA9NG4aml3K82N6wAlLKM2hym5iEM2c04IpPi1HRU4eS6mK9-RkdLHgh-d9Tn59_3Z_fdtu725-XF9tWy-VXFo_oujreDkoNoDqqUE6jtwY5Tuhh55rxQVoCd4ZJQcDUgo2ogbtej0ocU6-rL41sp3Xp2xywd5ebe3xRjnvtDTdgVX288rWmH_3WBa7C8VjjG7CtC8WqJQdCDD_JU0noBpDV8mvK-lzKiXj-BqCUXusydaa7FpThT892-77HQ6v6Esv4h9WrI4c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863902296</pqid></control><display><type>article</type><title>Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Besse, Laurianne ; Neti, Mariame ; Anselme, Isabelle ; Gerhardt, Christoph ; Rüther, Ulrich ; Laclef, Christine ; Schneider-Maunoury, Sylvie</creator><creatorcontrib>Besse, Laurianne ; Neti, Mariame ; Anselme, Isabelle ; Gerhardt, Christoph ; Rüther, Ulrich ; Laclef, Christine ; Schneider-Maunoury, Sylvie</creatorcontrib><description>Primary cilia have essential functions in vertebrate development and signaling. However, little is known about cilia function in brain morphogenesis, a process that is severely affected in human ciliopathies. Here, we study telencephalic morphogenesis in a mouse mutant for the ciliopathy gene Ftm (Rpgrip1l). We show that the olfactory bulbs are present in an ectopic location in the telencephalon of Ftm(-/-) fetuses and do not display morphological outgrowth at the end of gestation. Investigating the developmental origin of this defect, we have established that E12.5 Ftm(-/-) telencephalic neuroepithelial cells lack primary cilia. Moreover, in the anterior telencephalon, the subpallium is expanded at the expense of the pallium, a phenotype reminiscent of Gli3 mutants. This phenotype indeed correlates with a decreased production of the short form of the Gli3 protein. Introduction of a Gli3 mutant allele encoding the short form of Gli3 into Ftm mutants rescues both telencephalic patterning and olfactory bulb morphogenesis, despite the persistence of cilia defects. Together, our results show that olfactory bulb morphogenesis depends on primary cilia and that the essential role of cilia in this process is to produce processed Gli3R required for developmental patterning. Our analysis thus provides the first in vivo demonstration that primary cilia control a developmental process via production of the short, repressor form of Gli3. Moreover, our findings shed light on the developmental origin of olfactory bulb agenesis and of other brain morphogenetic defects found in human diseases affecting the primary cilium.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.059808</identifier><identifier>PMID: 21490064</identifier><language>eng</language><publisher>England: Company of Biologists</publisher><subject>Adaptor Proteins, Signal Transducing - deficiency ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animal genetics ; Animals ; Base Sequence ; Body Patterning ; Brain ; Cell Behavior ; Cell Differentiation ; Cellular Biology ; Cilia ; Cilia - physiology ; Development ; Development Biology ; DNA Primers - genetics ; Embryology and Organogenesis ; Female ; Fetuses ; Genetics ; Gestation ; Gli3 protein ; Humans ; Kruppel-Like Transcription Factors - genetics ; Kruppel-Like Transcription Factors - metabolism ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Mutant Strains ; Microscopy, Electron, Scanning ; Morphogenesis ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Olfactory bulb ; Olfactory Bulb - cytology ; Olfactory Bulb - embryology ; Olfactory Bulb - metabolism ; Pallium ; Pattern formation ; Pregnancy ; Protein Processing, Post-Translational ; Proteolysis ; Repressors ; Sensory Receptor Cells - cytology ; Telencephalon ; Telencephalon - cytology ; Telencephalon - embryology ; Telencephalon - metabolism ; Zinc Finger Protein Gli3</subject><ispartof>Development (Cambridge), 2011-05, Vol.138 (10), p.2079-2088</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cfe3be3bc4d51d95b08e0ff2885c637db275239749ca854d894431fe797ab7d53</citedby><cites>FETCH-LOGICAL-c454t-cfe3be3bc4d51d95b08e0ff2885c637db275239749ca854d894431fe797ab7d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3664,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21490064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02267486$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besse, Laurianne</creatorcontrib><creatorcontrib>Neti, Mariame</creatorcontrib><creatorcontrib>Anselme, Isabelle</creatorcontrib><creatorcontrib>Gerhardt, Christoph</creatorcontrib><creatorcontrib>Rüther, Ulrich</creatorcontrib><creatorcontrib>Laclef, Christine</creatorcontrib><creatorcontrib>Schneider-Maunoury, Sylvie</creatorcontrib><title>Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Primary cilia have essential functions in vertebrate development and signaling. However, little is known about cilia function in brain morphogenesis, a process that is severely affected in human ciliopathies. Here, we study telencephalic morphogenesis in a mouse mutant for the ciliopathy gene Ftm (Rpgrip1l). We show that the olfactory bulbs are present in an ectopic location in the telencephalon of Ftm(-/-) fetuses and do not display morphological outgrowth at the end of gestation. Investigating the developmental origin of this defect, we have established that E12.5 Ftm(-/-) telencephalic neuroepithelial cells lack primary cilia. Moreover, in the anterior telencephalon, the subpallium is expanded at the expense of the pallium, a phenotype reminiscent of Gli3 mutants. This phenotype indeed correlates with a decreased production of the short form of the Gli3 protein. Introduction of a Gli3 mutant allele encoding the short form of Gli3 into Ftm mutants rescues both telencephalic patterning and olfactory bulb morphogenesis, despite the persistence of cilia defects. Together, our results show that olfactory bulb morphogenesis depends on primary cilia and that the essential role of cilia in this process is to produce processed Gli3R required for developmental patterning. Our analysis thus provides the first in vivo demonstration that primary cilia control a developmental process via production of the short, repressor form of Gli3. Moreover, our findings shed light on the developmental origin of olfactory bulb agenesis and of other brain morphogenetic defects found in human diseases affecting the primary cilium.</description><subject>Adaptor Proteins, Signal Transducing - deficiency</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animal genetics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Body Patterning</subject><subject>Brain</subject><subject>Cell Behavior</subject><subject>Cell Differentiation</subject><subject>Cellular Biology</subject><subject>Cilia</subject><subject>Cilia - physiology</subject><subject>Development</subject><subject>Development Biology</subject><subject>DNA Primers - genetics</subject><subject>Embryology and Organogenesis</subject><subject>Female</subject><subject>Fetuses</subject><subject>Genetics</subject><subject>Gestation</subject><subject>Gli3 protein</subject><subject>Humans</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Kruppel-Like Transcription Factors - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Mutant Strains</subject><subject>Microscopy, Electron, Scanning</subject><subject>Morphogenesis</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Olfactory bulb</subject><subject>Olfactory Bulb - cytology</subject><subject>Olfactory Bulb - embryology</subject><subject>Olfactory Bulb - metabolism</subject><subject>Pallium</subject><subject>Pattern formation</subject><subject>Pregnancy</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteolysis</subject><subject>Repressors</subject><subject>Sensory Receptor Cells - cytology</subject><subject>Telencephalon</subject><subject>Telencephalon - cytology</subject><subject>Telencephalon - embryology</subject><subject>Telencephalon - metabolism</subject><subject>Zinc Finger Protein Gli3</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9r3DAQxUVpaDZpL_0AxbfSghP9tTTHENqksJAe0rMqy-NERWu5knch375anORaGBgYfu_xhkfIR0YvGJf8csDDBVVgqHlDNkxq3QLj8JZsKCjaMgB2Ss5K-UMpFZ3W78gpZxIo7eSG_P6Zw87lp8aHGFzj07TkFJsFI04e50cXg29mtyyYpzA9NG4aml3K82N6wAlLKM2hym5iEM2c04IpPi1HRU4eS6mK9-RkdLHgh-d9Tn59_3Z_fdtu725-XF9tWy-VXFo_oujreDkoNoDqqUE6jtwY5Tuhh55rxQVoCd4ZJQcDUgo2ogbtej0ocU6-rL41sp3Xp2xywd5ebe3xRjnvtDTdgVX288rWmH_3WBa7C8VjjG7CtC8WqJQdCDD_JU0noBpDV8mvK-lzKiXj-BqCUXusydaa7FpThT892-77HQ6v6Esv4h9WrI4c</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Besse, Laurianne</creator><creator>Neti, Mariame</creator><creator>Anselme, Isabelle</creator><creator>Gerhardt, Christoph</creator><creator>Rüther, Ulrich</creator><creator>Laclef, Christine</creator><creator>Schneider-Maunoury, Sylvie</creator><general>Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope></search><sort><creationdate>20110515</creationdate><title>Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing</title><author>Besse, Laurianne ; Neti, Mariame ; Anselme, Isabelle ; Gerhardt, Christoph ; Rüther, Ulrich ; Laclef, Christine ; Schneider-Maunoury, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cfe3be3bc4d51d95b08e0ff2885c637db275239749ca854d894431fe797ab7d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptor Proteins, Signal Transducing - deficiency</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animal genetics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Body Patterning</topic><topic>Brain</topic><topic>Cell Behavior</topic><topic>Cell Differentiation</topic><topic>Cellular Biology</topic><topic>Cilia</topic><topic>Cilia - physiology</topic><topic>Development</topic><topic>Development Biology</topic><topic>DNA Primers - genetics</topic><topic>Embryology and Organogenesis</topic><topic>Female</topic><topic>Fetuses</topic><topic>Genetics</topic><topic>Gestation</topic><topic>Gli3 protein</topic><topic>Humans</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Kruppel-Like Transcription Factors - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Mutant Strains</topic><topic>Microscopy, Electron, Scanning</topic><topic>Morphogenesis</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Olfactory bulb</topic><topic>Olfactory Bulb - cytology</topic><topic>Olfactory Bulb - embryology</topic><topic>Olfactory Bulb - metabolism</topic><topic>Pallium</topic><topic>Pattern formation</topic><topic>Pregnancy</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteolysis</topic><topic>Repressors</topic><topic>Sensory Receptor Cells - cytology</topic><topic>Telencephalon</topic><topic>Telencephalon - cytology</topic><topic>Telencephalon - embryology</topic><topic>Telencephalon - metabolism</topic><topic>Zinc Finger Protein Gli3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besse, Laurianne</creatorcontrib><creatorcontrib>Neti, Mariame</creatorcontrib><creatorcontrib>Anselme, Isabelle</creatorcontrib><creatorcontrib>Gerhardt, Christoph</creatorcontrib><creatorcontrib>Rüther, Ulrich</creatorcontrib><creatorcontrib>Laclef, Christine</creatorcontrib><creatorcontrib>Schneider-Maunoury, Sylvie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besse, Laurianne</au><au>Neti, Mariame</au><au>Anselme, Isabelle</au><au>Gerhardt, Christoph</au><au>Rüther, Ulrich</au><au>Laclef, Christine</au><au>Schneider-Maunoury, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>138</volume><issue>10</issue><spage>2079</spage><epage>2088</epage><pages>2079-2088</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Primary cilia have essential functions in vertebrate development and signaling. However, little is known about cilia function in brain morphogenesis, a process that is severely affected in human ciliopathies. Here, we study telencephalic morphogenesis in a mouse mutant for the ciliopathy gene Ftm (Rpgrip1l). We show that the olfactory bulbs are present in an ectopic location in the telencephalon of Ftm(-/-) fetuses and do not display morphological outgrowth at the end of gestation. Investigating the developmental origin of this defect, we have established that E12.5 Ftm(-/-) telencephalic neuroepithelial cells lack primary cilia. Moreover, in the anterior telencephalon, the subpallium is expanded at the expense of the pallium, a phenotype reminiscent of Gli3 mutants. This phenotype indeed correlates with a decreased production of the short form of the Gli3 protein. Introduction of a Gli3 mutant allele encoding the short form of Gli3 into Ftm mutants rescues both telencephalic patterning and olfactory bulb morphogenesis, despite the persistence of cilia defects. Together, our results show that olfactory bulb morphogenesis depends on primary cilia and that the essential role of cilia in this process is to produce processed Gli3R required for developmental patterning. Our analysis thus provides the first in vivo demonstration that primary cilia control a developmental process via production of the short, repressor form of Gli3. Moreover, our findings shed light on the developmental origin of olfactory bulb agenesis and of other brain morphogenetic defects found in human diseases affecting the primary cilium.</abstract><cop>England</cop><pub>Company of Biologists</pub><pmid>21490064</pmid><doi>10.1242/dev.059808</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2011-05, Vol.138 (10), p.2079-2088 |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02267486v1 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Adaptor Proteins, Signal Transducing - deficiency Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animal genetics Animals Base Sequence Body Patterning Brain Cell Behavior Cell Differentiation Cellular Biology Cilia Cilia - physiology Development Development Biology DNA Primers - genetics Embryology and Organogenesis Female Fetuses Genetics Gestation Gli3 protein Humans Kruppel-Like Transcription Factors - genetics Kruppel-Like Transcription Factors - metabolism Life Sciences Mice Mice, Inbred C57BL Mice, Knockout Mice, Mutant Strains Microscopy, Electron, Scanning Morphogenesis Mutant Proteins - genetics Mutant Proteins - metabolism Mutation Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Olfactory bulb Olfactory Bulb - cytology Olfactory Bulb - embryology Olfactory Bulb - metabolism Pallium Pattern formation Pregnancy Protein Processing, Post-Translational Proteolysis Repressors Sensory Receptor Cells - cytology Telencephalon Telencephalon - cytology Telencephalon - embryology Telencephalon - metabolism Zinc Finger Protein Gli3 |
title | Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20cilia%20control%20telencephalic%20patterning%20and%20morphogenesis%20via%20Gli3%20proteolytic%20processing&rft.jtitle=Development%20(Cambridge)&rft.au=Besse,%20Laurianne&rft.date=2011-05-15&rft.volume=138&rft.issue=10&rft.spage=2079&rft.epage=2088&rft.pages=2079-2088&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.059808&rft_dat=%3Cproquest_hal_p%3E863902296%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863902296&rft_id=info:pmid/21490064&rfr_iscdi=true |