Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept
The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combina...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2020-08, Vol.234 (10), p.1688-1705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1705 |
---|---|
container_issue | 10 |
container_start_page | 1688 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering |
container_volume | 234 |
creator | Bohari, Baizura Borlon, Quentin Bronz, Murat Benard, Emmanuel |
description | The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected. |
doi_str_mv | 10.1177/0954410019857300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02267174v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410019857300</sage_id><sourcerecordid>2430949623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFbvHgOePERn_yRpjqWoFQpe9CYsm81s3ZJm626q9OY7-IY-iRsiFgTnMjDfbz6-GULOKVxRWhTXUGZCUABaTrKCAxyQEQNBUw4sOySjXk57_ZichLCCWFnOR-R5it7Vu1atrU7WrsYmcSbZeLfBpkH_9fH5bttlYtsOvdKddW1inE9qGzpvq22H9R5OlPXaK9Ml2rUaN90pOTKqCXj208fk6fbmcTZPFw9397PpItVc8C7lrGaguIGsyiZZTo1CY6o85qNQYimyeBTTFTA0Va1ZLlCVlOcVFMAKjiUfk8vB90U1cuPtWvmddMrK-XQh-xkwlhe0EG80shcDG2O_bjF0cuW2vo3xJBMcSlHmjEcKBkp7F4JH82tLQfb_ln__HVfSYSWoJe5N_-W_ATDTf_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430949623</pqid></control><display><type>article</type><title>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</title><source>SAGE Complete A-Z List</source><creator>Bohari, Baizura ; Borlon, Quentin ; Bronz, Murat ; Benard, Emmanuel</creator><creatorcontrib>Bohari, Baizura ; Borlon, Quentin ; Bronz, Murat ; Benard, Emmanuel</creatorcontrib><description>The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410019857300</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Aircraft ; Aircraft design ; Automatic ; Blades ; Computing time ; Engineering Sciences ; Induced drag ; Numerical models ; Vortex lattice method</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2020-08, Vol.234 (10), p.1688-1705</ispartof><rights>IMechE 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</citedby><cites>FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</cites><orcidid>0000-0001-9998-238X ; 0000-0002-1098-5240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410019857300$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410019857300$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21799,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://enac.hal.science/hal-02267174$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohari, Baizura</creatorcontrib><creatorcontrib>Borlon, Quentin</creatorcontrib><creatorcontrib>Bronz, Murat</creatorcontrib><creatorcontrib>Benard, Emmanuel</creatorcontrib><title>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Aircraft design</subject><subject>Automatic</subject><subject>Blades</subject><subject>Computing time</subject><subject>Engineering Sciences</subject><subject>Induced drag</subject><subject>Numerical models</subject><subject>Vortex lattice method</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFbvHgOePERn_yRpjqWoFQpe9CYsm81s3ZJm626q9OY7-IY-iRsiFgTnMjDfbz6-GULOKVxRWhTXUGZCUABaTrKCAxyQEQNBUw4sOySjXk57_ZichLCCWFnOR-R5it7Vu1atrU7WrsYmcSbZeLfBpkH_9fH5bttlYtsOvdKddW1inE9qGzpvq22H9R5OlPXaK9Ml2rUaN90pOTKqCXj208fk6fbmcTZPFw9397PpItVc8C7lrGaguIGsyiZZTo1CY6o85qNQYimyeBTTFTA0Va1ZLlCVlOcVFMAKjiUfk8vB90U1cuPtWvmddMrK-XQh-xkwlhe0EG80shcDG2O_bjF0cuW2vo3xJBMcSlHmjEcKBkp7F4JH82tLQfb_ln__HVfSYSWoJe5N_-W_ATDTf_Y</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Bohari, Baizura</creator><creator>Borlon, Quentin</creator><creator>Bronz, Murat</creator><creator>Benard, Emmanuel</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9998-238X</orcidid><orcidid>https://orcid.org/0000-0002-1098-5240</orcidid></search><sort><creationdate>20200801</creationdate><title>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</title><author>Bohari, Baizura ; Borlon, Quentin ; Bronz, Murat ; Benard, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Aircraft design</topic><topic>Automatic</topic><topic>Blades</topic><topic>Computing time</topic><topic>Engineering Sciences</topic><topic>Induced drag</topic><topic>Numerical models</topic><topic>Vortex lattice method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohari, Baizura</creatorcontrib><creatorcontrib>Borlon, Quentin</creatorcontrib><creatorcontrib>Bronz, Murat</creatorcontrib><creatorcontrib>Benard, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohari, Baizura</au><au>Borlon, Quentin</au><au>Bronz, Murat</au><au>Benard, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>234</volume><issue>10</issue><spage>1688</spage><epage>1705</epage><pages>1688-1705</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410019857300</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9998-238X</orcidid><orcidid>https://orcid.org/0000-0002-1098-5240</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4100 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2020-08, Vol.234 (10), p.1688-1705 |
issn | 0954-4100 2041-3025 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02267174v1 |
source | SAGE Complete A-Z List |
subjects | Aerodynamics Aircraft Aircraft design Automatic Blades Computing time Engineering Sciences Induced drag Numerical models Vortex lattice method |
title | Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20model%20of%20propeller%E2%80%93wing%20interaction%20for%20distributed%20propeller%20aircraft%20concept&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Bohari,%20Baizura&rft.date=2020-08-01&rft.volume=234&rft.issue=10&rft.spage=1688&rft.epage=1705&rft.pages=1688-1705&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410019857300&rft_dat=%3Cproquest_hal_p%3E2430949623%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430949623&rft_id=info:pmid/&rft_sage_id=10.1177_0954410019857300&rfr_iscdi=true |