Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept

The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2020-08, Vol.234 (10), p.1688-1705
Hauptverfasser: Bohari, Baizura, Borlon, Quentin, Bronz, Murat, Benard, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1705
container_issue 10
container_start_page 1688
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 234
creator Bohari, Baizura
Borlon, Quentin
Bronz, Murat
Benard, Emmanuel
description The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.
doi_str_mv 10.1177/0954410019857300
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02267174v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410019857300</sage_id><sourcerecordid>2430949623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFbvHgOePERn_yRpjqWoFQpe9CYsm81s3ZJm626q9OY7-IY-iRsiFgTnMjDfbz6-GULOKVxRWhTXUGZCUABaTrKCAxyQEQNBUw4sOySjXk57_ZichLCCWFnOR-R5it7Vu1atrU7WrsYmcSbZeLfBpkH_9fH5bttlYtsOvdKddW1inE9qGzpvq22H9R5OlPXaK9Ml2rUaN90pOTKqCXj208fk6fbmcTZPFw9397PpItVc8C7lrGaguIGsyiZZTo1CY6o85qNQYimyeBTTFTA0Va1ZLlCVlOcVFMAKjiUfk8vB90U1cuPtWvmddMrK-XQh-xkwlhe0EG80shcDG2O_bjF0cuW2vo3xJBMcSlHmjEcKBkp7F4JH82tLQfb_ln__HVfSYSWoJe5N_-W_ATDTf_Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430949623</pqid></control><display><type>article</type><title>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</title><source>SAGE Complete A-Z List</source><creator>Bohari, Baizura ; Borlon, Quentin ; Bronz, Murat ; Benard, Emmanuel</creator><creatorcontrib>Bohari, Baizura ; Borlon, Quentin ; Bronz, Murat ; Benard, Emmanuel</creatorcontrib><description>The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410019857300</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Aircraft ; Aircraft design ; Automatic ; Blades ; Computing time ; Engineering Sciences ; Induced drag ; Numerical models ; Vortex lattice method</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2020-08, Vol.234 (10), p.1688-1705</ispartof><rights>IMechE 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</citedby><cites>FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</cites><orcidid>0000-0001-9998-238X ; 0000-0002-1098-5240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410019857300$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410019857300$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21799,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://enac.hal.science/hal-02267174$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohari, Baizura</creatorcontrib><creatorcontrib>Borlon, Quentin</creatorcontrib><creatorcontrib>Bronz, Murat</creatorcontrib><creatorcontrib>Benard, Emmanuel</creatorcontrib><title>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Aircraft design</subject><subject>Automatic</subject><subject>Blades</subject><subject>Computing time</subject><subject>Engineering Sciences</subject><subject>Induced drag</subject><subject>Numerical models</subject><subject>Vortex lattice method</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFbvHgOePERn_yRpjqWoFQpe9CYsm81s3ZJm626q9OY7-IY-iRsiFgTnMjDfbz6-GULOKVxRWhTXUGZCUABaTrKCAxyQEQNBUw4sOySjXk57_ZichLCCWFnOR-R5it7Vu1atrU7WrsYmcSbZeLfBpkH_9fH5bttlYtsOvdKddW1inE9qGzpvq22H9R5OlPXaK9Ml2rUaN90pOTKqCXj208fk6fbmcTZPFw9397PpItVc8C7lrGaguIGsyiZZTo1CY6o85qNQYimyeBTTFTA0Va1ZLlCVlOcVFMAKjiUfk8vB90U1cuPtWvmddMrK-XQh-xkwlhe0EG80shcDG2O_bjF0cuW2vo3xJBMcSlHmjEcKBkp7F4JH82tLQfb_ln__HVfSYSWoJe5N_-W_ATDTf_Y</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Bohari, Baizura</creator><creator>Borlon, Quentin</creator><creator>Bronz, Murat</creator><creator>Benard, Emmanuel</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9998-238X</orcidid><orcidid>https://orcid.org/0000-0002-1098-5240</orcidid></search><sort><creationdate>20200801</creationdate><title>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</title><author>Bohari, Baizura ; Borlon, Quentin ; Bronz, Murat ; Benard, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-32d20a3f05b58561faeffb6563109e9450192cb02efbdc264ea9136b070273e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Aircraft design</topic><topic>Automatic</topic><topic>Blades</topic><topic>Computing time</topic><topic>Engineering Sciences</topic><topic>Induced drag</topic><topic>Numerical models</topic><topic>Vortex lattice method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohari, Baizura</creatorcontrib><creatorcontrib>Borlon, Quentin</creatorcontrib><creatorcontrib>Bronz, Murat</creatorcontrib><creatorcontrib>Benard, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohari, Baizura</au><au>Borlon, Quentin</au><au>Bronz, Murat</au><au>Benard, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>234</volume><issue>10</issue><spage>1688</spage><epage>1705</epage><pages>1688-1705</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>The present investigation addresses two key issues in aerodynamic performance of a propeller–wing configuration, namely linear and nonlinear predictions with low-order numerical models. The developed aerodynamic model is targeted to be used in the preliminary aircraft design loop. First, the combination of selected propeller model, i.e. blade element theory with the wing model, i.e. lifting line theory and vortex lattice method is considered for linear aerodynamic model. Second, for the nonlinear prediction, a modified vortex lattice method is paired with the two-dimensional viscous effect of the airfoils to simplify and reduce the computational time. These models are implemented and validated with existing experimental data to predict the differences in lift and drag distribution. Overall, the predicted results show agreement with low percentage of error compared with the experimental data for various thrust coefficients and produced induced drag distribution that behaves as expected.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410019857300</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9998-238X</orcidid><orcidid>https://orcid.org/0000-0002-1098-5240</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2020-08, Vol.234 (10), p.1688-1705
issn 0954-4100
2041-3025
language eng
recordid cdi_hal_primary_oai_HAL_hal_02267174v1
source SAGE Complete A-Z List
subjects Aerodynamics
Aircraft
Aircraft design
Automatic
Blades
Computing time
Engineering Sciences
Induced drag
Numerical models
Vortex lattice method
title Aerodynamic model of propeller–wing interaction for distributed propeller aircraft concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20model%20of%20propeller%E2%80%93wing%20interaction%20for%20distributed%20propeller%20aircraft%20concept&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Bohari,%20Baizura&rft.date=2020-08-01&rft.volume=234&rft.issue=10&rft.spage=1688&rft.epage=1705&rft.pages=1688-1705&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410019857300&rft_dat=%3Cproquest_hal_p%3E2430949623%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430949623&rft_id=info:pmid/&rft_sage_id=10.1177_0954410019857300&rfr_iscdi=true