Sur la variation de certaines suites de parties fractionnaires

Let 0. We prove the following asymptotic formula with = − , uniformly for ⩾ 40 (1 +

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics 2021-12, Vol.29 (3), p.407-430
Hauptverfasser: Balazard, Michel, Benferhat, Leila, Bouderbala, Mihoub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 407
container_title Communications in Mathematics
container_volume 29
creator Balazard, Michel
Benferhat, Leila
Bouderbala, Mihoub
description Let 0. We prove the following asymptotic formula with = − , uniformly for ⩾ 40 (1 +
doi_str_mv 10.2478/cm-2020-0021
format Article
fullrecord <record><control><sourceid>walterdegruyter_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02190613v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_cm_2020_0021293407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1607-5133fd595cecf0906858309aa5abb05946fee4c230f63010626f7c909c5498e73</originalsourceid><addsrcrecordid>eNptkE9LAzEUxIMoWGpvfoC9Cq6-_NnsxoNQilphwYN6Dq9poinb3ZLsVvrtzVIRD57e8PjNwAwhlxRumCirW7PNGTDIARg9IRPGucwpU9XpH31OZjFuAIAqBoKKCbl_HULWYLbH4LH3XZutbWZs6NG3NmZx8H066bfD0PskXUAzci36YOMFOXPYRDv7uVPy_vjwtljm9cvT82Je54ZKKPOCcu7WhSqMNQ4UyKqoOCjEAlcrKJSQzlphGAcnOVCQTLrSKFCmEKqyJZ-Sq2PuJzZ6F_wWw0F36PVyXuvxl0qnWMr3LLHXR9aELsZg3a-Bgh6n0marx6n0OFXC7474Fza9DWv7EYZDEnrTDaFNpf61McUFlPwb3XJsqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sur la variation de certaines suites de parties fractionnaires</title><source>Alma/SFX Local Collection</source><creator>Balazard, Michel ; Benferhat, Leila ; Bouderbala, Mihoub</creator><creatorcontrib>Balazard, Michel ; Benferhat, Leila ; Bouderbala, Mihoub</creatorcontrib><description>Let 0. We prove the following asymptotic formula with = − , uniformly for ⩾ 40 (1 +</description><identifier>ISSN: 2336-1298</identifier><identifier>ISSN: 1804-1388</identifier><identifier>EISSN: 2336-1298</identifier><identifier>DOI: 10.2478/cm-2020-0021</identifier><language>eng</language><publisher>Sciendo</publisher><subject>11N37 ; Elementary methods ; Fractional part ; Mathematics ; Number Theory ; van der Corput estimates</subject><ispartof>Communications in Mathematics, 2021-12, Vol.29 (3), p.407-430</ispartof><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1607-5133fd595cecf0906858309aa5abb05946fee4c230f63010626f7c909c5498e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02190613$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Balazard, Michel</creatorcontrib><creatorcontrib>Benferhat, Leila</creatorcontrib><creatorcontrib>Bouderbala, Mihoub</creatorcontrib><title>Sur la variation de certaines suites de parties fractionnaires</title><title>Communications in Mathematics</title><description>Let 0. We prove the following asymptotic formula with = − , uniformly for ⩾ 40 (1 +</description><subject>11N37</subject><subject>Elementary methods</subject><subject>Fractional part</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>van der Corput estimates</subject><issn>2336-1298</issn><issn>1804-1388</issn><issn>2336-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEUxIMoWGpvfoC9Cq6-_NnsxoNQilphwYN6Dq9poinb3ZLsVvrtzVIRD57e8PjNwAwhlxRumCirW7PNGTDIARg9IRPGucwpU9XpH31OZjFuAIAqBoKKCbl_HULWYLbH4LH3XZutbWZs6NG3NmZx8H066bfD0PskXUAzci36YOMFOXPYRDv7uVPy_vjwtljm9cvT82Je54ZKKPOCcu7WhSqMNQ4UyKqoOCjEAlcrKJSQzlphGAcnOVCQTLrSKFCmEKqyJZ-Sq2PuJzZ6F_wWw0F36PVyXuvxl0qnWMr3LLHXR9aELsZg3a-Bgh6n0marx6n0OFXC7474Fza9DWv7EYZDEnrTDaFNpf61McUFlPwb3XJsqg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Balazard, Michel</creator><creator>Benferhat, Leila</creator><creator>Bouderbala, Mihoub</creator><general>Sciendo</general><general>University of Ostrava</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20211201</creationdate><title>Sur la variation de certaines suites de parties fractionnaires</title><author>Balazard, Michel ; Benferhat, Leila ; Bouderbala, Mihoub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1607-5133fd595cecf0906858309aa5abb05946fee4c230f63010626f7c909c5498e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>11N37</topic><topic>Elementary methods</topic><topic>Fractional part</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>van der Corput estimates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balazard, Michel</creatorcontrib><creatorcontrib>Benferhat, Leila</creatorcontrib><creatorcontrib>Bouderbala, Mihoub</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balazard, Michel</au><au>Benferhat, Leila</au><au>Bouderbala, Mihoub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sur la variation de certaines suites de parties fractionnaires</atitle><jtitle>Communications in Mathematics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>29</volume><issue>3</issue><spage>407</spage><epage>430</epage><pages>407-430</pages><issn>2336-1298</issn><issn>1804-1388</issn><eissn>2336-1298</eissn><abstract>Let 0. We prove the following asymptotic formula with = − , uniformly for ⩾ 40 (1 +</abstract><pub>Sciendo</pub><doi>10.2478/cm-2020-0021</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2336-1298
ispartof Communications in Mathematics, 2021-12, Vol.29 (3), p.407-430
issn 2336-1298
1804-1388
2336-1298
language eng
recordid cdi_hal_primary_oai_HAL_hal_02190613v2
source Alma/SFX Local Collection
subjects 11N37
Elementary methods
Fractional part
Mathematics
Number Theory
van der Corput estimates
title Sur la variation de certaines suites de parties fractionnaires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sur%20la%20variation%20de%20certaines%20suites%20de%20parties%20fractionnaires&rft.jtitle=Communications%20in%20Mathematics&rft.au=Balazard,%20Michel&rft.date=2021-12-01&rft.volume=29&rft.issue=3&rft.spage=407&rft.epage=430&rft.pages=407-430&rft.issn=2336-1298&rft.eissn=2336-1298&rft_id=info:doi/10.2478/cm-2020-0021&rft_dat=%3Cwalterdegruyter_hal_p%3E10_2478_cm_2020_0021293407%3C/walterdegruyter_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true