Thermoelectric properties of TiS2 mechanically alloyed compounds
Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-millin...
Gespeichert in:
Veröffentlicht in: | Journal of the European Ceramic Society 2016-04, Vol.36 (5), p.1183-1189 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1189 |
---|---|
container_issue | 5 |
container_start_page | 1183 |
container_title | Journal of the European Ceramic Society |
container_volume | 36 |
creator | Bourgès, Cédric Barbier, Tristan Guélou, Gabin Vaqueiro, Paz Powell, Anthony V. Lebedev, Oleg I. Barrier, Nicolas Kinemuchi, Yoshiaki Guilmeau, Emmanuel |
description | Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects. |
doi_str_mv | 10.1016/j.jeurceramsoc.2015.11.025 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02184700v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221915302387</els_id><sourcerecordid>oai_HAL_hal_02184700v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_Q_DmIXEn2U2yniz1o0LBgxW8LdvZCd2QdMtuW-i_N6UiHr3MwPA-L8zD2C3wDDiU923W0i4gBdNHj1nOQWYAGc_lGRtBXRVpCerrnI24kjLNc1CX7CrGlnOouFIj9rhYUeg9dYTb4DDZBL-hsHUUE98kC_eRJz3hyqwdmq47JMPwB7IJ-n7jd2sbr9lFY7pINz97zD5fnhfTWTp_f32bTuYpCiW2qZWytJyXorZQClAFQkmVMQJKiVbgkmNtyXJRFFaBFUotyWBTNyUVEmtTjNndqXdlOr0JrjfhoL1xejaZ6-ON51CLivM9DNmHUxaDjzFQ8wsA10dvutV_vemjNw0wdMgBfjrBNHyzdxR0REdrJOvCIElb7_5T8w0vaX40</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric properties of TiS2 mechanically alloyed compounds</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bourgès, Cédric ; Barbier, Tristan ; Guélou, Gabin ; Vaqueiro, Paz ; Powell, Anthony V. ; Lebedev, Oleg I. ; Barrier, Nicolas ; Kinemuchi, Yoshiaki ; Guilmeau, Emmanuel</creator><creatorcontrib>Bourgès, Cédric ; Barbier, Tristan ; Guélou, Gabin ; Vaqueiro, Paz ; Powell, Anthony V. ; Lebedev, Oleg I. ; Barrier, Nicolas ; Kinemuchi, Yoshiaki ; Guilmeau, Emmanuel</creatorcontrib><description>Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2015.11.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Cristallography ; Material chemistry ; Mechanical alloying ; or physical chemistry ; Theoretical and ; Thermoelectric ; Titanium disulfide</subject><ispartof>Journal of the European Ceramic Society, 2016-04, Vol.36 (5), p.1183-1189</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</citedby><cites>FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</cites><orcidid>0000-0001-7439-088X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeurceramsoc.2015.11.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02184700$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourgès, Cédric</creatorcontrib><creatorcontrib>Barbier, Tristan</creatorcontrib><creatorcontrib>Guélou, Gabin</creatorcontrib><creatorcontrib>Vaqueiro, Paz</creatorcontrib><creatorcontrib>Powell, Anthony V.</creatorcontrib><creatorcontrib>Lebedev, Oleg I.</creatorcontrib><creatorcontrib>Barrier, Nicolas</creatorcontrib><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Guilmeau, Emmanuel</creatorcontrib><title>Thermoelectric properties of TiS2 mechanically alloyed compounds</title><title>Journal of the European Ceramic Society</title><description>Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.</description><subject>Chemical Sciences</subject><subject>Cristallography</subject><subject>Material chemistry</subject><subject>Mechanical alloying</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><subject>Thermoelectric</subject><subject>Titanium disulfide</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_Q_DmIXEn2U2yniz1o0LBgxW8LdvZCd2QdMtuW-i_N6UiHr3MwPA-L8zD2C3wDDiU923W0i4gBdNHj1nOQWYAGc_lGRtBXRVpCerrnI24kjLNc1CX7CrGlnOouFIj9rhYUeg9dYTb4DDZBL-hsHUUE98kC_eRJz3hyqwdmq47JMPwB7IJ-n7jd2sbr9lFY7pINz97zD5fnhfTWTp_f32bTuYpCiW2qZWytJyXorZQClAFQkmVMQJKiVbgkmNtyXJRFFaBFUotyWBTNyUVEmtTjNndqXdlOr0JrjfhoL1xejaZ6-ON51CLivM9DNmHUxaDjzFQ8wsA10dvutV_vemjNw0wdMgBfjrBNHyzdxR0REdrJOvCIElb7_5T8w0vaX40</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Bourgès, Cédric</creator><creator>Barbier, Tristan</creator><creator>Guélou, Gabin</creator><creator>Vaqueiro, Paz</creator><creator>Powell, Anthony V.</creator><creator>Lebedev, Oleg I.</creator><creator>Barrier, Nicolas</creator><creator>Kinemuchi, Yoshiaki</creator><creator>Guilmeau, Emmanuel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7439-088X</orcidid></search><sort><creationdate>20160401</creationdate><title>Thermoelectric properties of TiS2 mechanically alloyed compounds</title><author>Bourgès, Cédric ; Barbier, Tristan ; Guélou, Gabin ; Vaqueiro, Paz ; Powell, Anthony V. ; Lebedev, Oleg I. ; Barrier, Nicolas ; Kinemuchi, Yoshiaki ; Guilmeau, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical Sciences</topic><topic>Cristallography</topic><topic>Material chemistry</topic><topic>Mechanical alloying</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><topic>Thermoelectric</topic><topic>Titanium disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgès, Cédric</creatorcontrib><creatorcontrib>Barbier, Tristan</creatorcontrib><creatorcontrib>Guélou, Gabin</creatorcontrib><creatorcontrib>Vaqueiro, Paz</creatorcontrib><creatorcontrib>Powell, Anthony V.</creatorcontrib><creatorcontrib>Lebedev, Oleg I.</creatorcontrib><creatorcontrib>Barrier, Nicolas</creatorcontrib><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Guilmeau, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgès, Cédric</au><au>Barbier, Tristan</au><au>Guélou, Gabin</au><au>Vaqueiro, Paz</au><au>Powell, Anthony V.</au><au>Lebedev, Oleg I.</au><au>Barrier, Nicolas</au><au>Kinemuchi, Yoshiaki</au><au>Guilmeau, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of TiS2 mechanically alloyed compounds</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>36</volume><issue>5</issue><spage>1183</spage><epage>1189</epage><pages>1183-1189</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2015.11.025</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7439-088X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-2219 |
ispartof | Journal of the European Ceramic Society, 2016-04, Vol.36 (5), p.1183-1189 |
issn | 0955-2219 1873-619X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02184700v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chemical Sciences Cristallography Material chemistry Mechanical alloying or physical chemistry Theoretical and Thermoelectric Titanium disulfide |
title | Thermoelectric properties of TiS2 mechanically alloyed compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20TiS2%20mechanically%20alloyed%20compounds&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Bourg%C3%A8s,%20C%C3%A9dric&rft.date=2016-04-01&rft.volume=36&rft.issue=5&rft.spage=1183&rft.epage=1189&rft.pages=1183-1189&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2015.11.025&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02184700v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0955221915302387&rfr_iscdi=true |