Thermoelectric properties of TiS2 mechanically alloyed compounds

Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-millin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2016-04, Vol.36 (5), p.1183-1189
Hauptverfasser: Bourgès, Cédric, Barbier, Tristan, Guélou, Gabin, Vaqueiro, Paz, Powell, Anthony V., Lebedev, Oleg I., Barrier, Nicolas, Kinemuchi, Yoshiaki, Guilmeau, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1189
container_issue 5
container_start_page 1183
container_title Journal of the European Ceramic Society
container_volume 36
creator Bourgès, Cédric
Barbier, Tristan
Guélou, Gabin
Vaqueiro, Paz
Powell, Anthony V.
Lebedev, Oleg I.
Barrier, Nicolas
Kinemuchi, Yoshiaki
Guilmeau, Emmanuel
description Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.
doi_str_mv 10.1016/j.jeurceramsoc.2015.11.025
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02184700v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221915302387</els_id><sourcerecordid>oai_HAL_hal_02184700v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_Q_DmIXEn2U2yniz1o0LBgxW8LdvZCd2QdMtuW-i_N6UiHr3MwPA-L8zD2C3wDDiU923W0i4gBdNHj1nOQWYAGc_lGRtBXRVpCerrnI24kjLNc1CX7CrGlnOouFIj9rhYUeg9dYTb4DDZBL-hsHUUE98kC_eRJz3hyqwdmq47JMPwB7IJ-n7jd2sbr9lFY7pINz97zD5fnhfTWTp_f32bTuYpCiW2qZWytJyXorZQClAFQkmVMQJKiVbgkmNtyXJRFFaBFUotyWBTNyUVEmtTjNndqXdlOr0JrjfhoL1xejaZ6-ON51CLivM9DNmHUxaDjzFQ8wsA10dvutV_vemjNw0wdMgBfjrBNHyzdxR0REdrJOvCIElb7_5T8w0vaX40</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric properties of TiS2 mechanically alloyed compounds</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bourgès, Cédric ; Barbier, Tristan ; Guélou, Gabin ; Vaqueiro, Paz ; Powell, Anthony V. ; Lebedev, Oleg I. ; Barrier, Nicolas ; Kinemuchi, Yoshiaki ; Guilmeau, Emmanuel</creator><creatorcontrib>Bourgès, Cédric ; Barbier, Tristan ; Guélou, Gabin ; Vaqueiro, Paz ; Powell, Anthony V. ; Lebedev, Oleg I. ; Barrier, Nicolas ; Kinemuchi, Yoshiaki ; Guilmeau, Emmanuel</creatorcontrib><description>Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2015.11.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Cristallography ; Material chemistry ; Mechanical alloying ; or physical chemistry ; Theoretical and ; Thermoelectric ; Titanium disulfide</subject><ispartof>Journal of the European Ceramic Society, 2016-04, Vol.36 (5), p.1183-1189</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</citedby><cites>FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</cites><orcidid>0000-0001-7439-088X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeurceramsoc.2015.11.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02184700$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourgès, Cédric</creatorcontrib><creatorcontrib>Barbier, Tristan</creatorcontrib><creatorcontrib>Guélou, Gabin</creatorcontrib><creatorcontrib>Vaqueiro, Paz</creatorcontrib><creatorcontrib>Powell, Anthony V.</creatorcontrib><creatorcontrib>Lebedev, Oleg I.</creatorcontrib><creatorcontrib>Barrier, Nicolas</creatorcontrib><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Guilmeau, Emmanuel</creatorcontrib><title>Thermoelectric properties of TiS2 mechanically alloyed compounds</title><title>Journal of the European Ceramic Society</title><description>Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.</description><subject>Chemical Sciences</subject><subject>Cristallography</subject><subject>Material chemistry</subject><subject>Mechanical alloying</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><subject>Thermoelectric</subject><subject>Titanium disulfide</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_Q_DmIXEn2U2yniz1o0LBgxW8LdvZCd2QdMtuW-i_N6UiHr3MwPA-L8zD2C3wDDiU923W0i4gBdNHj1nOQWYAGc_lGRtBXRVpCerrnI24kjLNc1CX7CrGlnOouFIj9rhYUeg9dYTb4DDZBL-hsHUUE98kC_eRJz3hyqwdmq47JMPwB7IJ-n7jd2sbr9lFY7pINz97zD5fnhfTWTp_f32bTuYpCiW2qZWytJyXorZQClAFQkmVMQJKiVbgkmNtyXJRFFaBFUotyWBTNyUVEmtTjNndqXdlOr0JrjfhoL1xejaZ6-ON51CLivM9DNmHUxaDjzFQ8wsA10dvutV_vemjNw0wdMgBfjrBNHyzdxR0REdrJOvCIElb7_5T8w0vaX40</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Bourgès, Cédric</creator><creator>Barbier, Tristan</creator><creator>Guélou, Gabin</creator><creator>Vaqueiro, Paz</creator><creator>Powell, Anthony V.</creator><creator>Lebedev, Oleg I.</creator><creator>Barrier, Nicolas</creator><creator>Kinemuchi, Yoshiaki</creator><creator>Guilmeau, Emmanuel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7439-088X</orcidid></search><sort><creationdate>20160401</creationdate><title>Thermoelectric properties of TiS2 mechanically alloyed compounds</title><author>Bourgès, Cédric ; Barbier, Tristan ; Guélou, Gabin ; Vaqueiro, Paz ; Powell, Anthony V. ; Lebedev, Oleg I. ; Barrier, Nicolas ; Kinemuchi, Yoshiaki ; Guilmeau, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-d556d00648d164193c16e7aa4165cd4cb0c8ded0433d91d499beacf8f6e35c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical Sciences</topic><topic>Cristallography</topic><topic>Material chemistry</topic><topic>Mechanical alloying</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><topic>Thermoelectric</topic><topic>Titanium disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgès, Cédric</creatorcontrib><creatorcontrib>Barbier, Tristan</creatorcontrib><creatorcontrib>Guélou, Gabin</creatorcontrib><creatorcontrib>Vaqueiro, Paz</creatorcontrib><creatorcontrib>Powell, Anthony V.</creatorcontrib><creatorcontrib>Lebedev, Oleg I.</creatorcontrib><creatorcontrib>Barrier, Nicolas</creatorcontrib><creatorcontrib>Kinemuchi, Yoshiaki</creatorcontrib><creatorcontrib>Guilmeau, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgès, Cédric</au><au>Barbier, Tristan</au><au>Guélou, Gabin</au><au>Vaqueiro, Paz</au><au>Powell, Anthony V.</au><au>Lebedev, Oleg I.</au><au>Barrier, Nicolas</au><au>Kinemuchi, Yoshiaki</au><au>Guilmeau, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of TiS2 mechanically alloyed compounds</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>36</volume><issue>5</issue><spage>1183</spage><epage>1189</epage><pages>1183-1189</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>Bulk polycrystalline samples in the series Ti1−xNbxS2 (0≤x≤0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x=0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8W/mK at 700K. This enables the figure of merit to reach ZT=0.3 at 700K for x=0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2015.11.025</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7439-088X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2016-04, Vol.36 (5), p.1183-1189
issn 0955-2219
1873-619X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02184700v1
source ScienceDirect Journals (5 years ago - present)
subjects Chemical Sciences
Cristallography
Material chemistry
Mechanical alloying
or physical chemistry
Theoretical and
Thermoelectric
Titanium disulfide
title Thermoelectric properties of TiS2 mechanically alloyed compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20TiS2%20mechanically%20alloyed%20compounds&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Bourg%C3%A8s,%20C%C3%A9dric&rft.date=2016-04-01&rft.volume=36&rft.issue=5&rft.spage=1183&rft.epage=1189&rft.pages=1183-1189&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2015.11.025&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02184700v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0955221915302387&rfr_iscdi=true