Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial
Purpose To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs). Material and methods...
Gespeichert in:
Veröffentlicht in: | European spine journal 2020-07, Vol.29 (7), p.1580-1589 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1589 |
---|---|
container_issue | 7 |
container_start_page | 1580 |
container_title | European spine journal |
container_volume | 29 |
creator | Auloge, Pierre Cazzato, Roberto Luigi Ramamurthy, Nitin de Marini, Pierre Rousseau, Chloé Garnon, Julien Charles, Yan Philippe Steib, Jean-Paul Gangi, Afshin |
description | Purpose
To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs).
Material and methods
This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time.
Results
Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B (
p
> 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s;
p
= 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm
2
and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm
2
and 10.4 ± 4.1 s;
p
= 0.025 and 0.005), respectively.
Conclusion
AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance.
Graphic abstract
These slides can be retrieved under Electronic Supplementary Material. |
doi_str_mv | 10.1007/s00586-019-06054-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02179153v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251465110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EotvCC3BAlrjAITBjJ86a26qCFmklLnC2Jo6zuMomwXZW2jsPXoeUInHgZMn-5p8Zf4y9QniPAPWHCFBtVQGoC1BQlYV6wjZYSlGAluIp24AuoVA16gt2GeMdAFYa1HN2IVHUoGq1Yb928-HohuRaHhz1Pp05DS2nkHznraee-_zY9_7gBuuKhmImBzr5AyU_Drydgx8OfHLBzokGN86Rn1xIrgnj1FNM54-c-OT7MfGQk8ejXxJs7wdvc3oKuccL9qyjPrqXD-cV-_7507fr22L_9ebL9W5f2BJ0KrAVCrYV6koJpWsCUtRQvdUNgCsb1WroZO3sVnZOWOFqpK6xncC2bGWJQl6xd2vuD-rNFPyRwtmM5M3tbm-WOxBYa6zkCTP7dmWnMP6cXUwmT27zT6xLGiEqIVTGZUbf_IPejXMY8iYLhaWqECFTYqVsGGMMrnucAMEsPs3q02Sf5rdPo3LR64fouTm69rHkj8AMyBWI0yLChb-9_xN7D63irKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251465110</pqid></control><display><type>article</type><title>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</title><source>SpringerNature Journals</source><creator>Auloge, Pierre ; Cazzato, Roberto Luigi ; Ramamurthy, Nitin ; de Marini, Pierre ; Rousseau, Chloé ; Garnon, Julien ; Charles, Yan Philippe ; Steib, Jean-Paul ; Gangi, Afshin</creator><creatorcontrib>Auloge, Pierre ; Cazzato, Roberto Luigi ; Ramamurthy, Nitin ; de Marini, Pierre ; Rousseau, Chloé ; Garnon, Julien ; Charles, Yan Philippe ; Steib, Jean-Paul ; Gangi, Afshin</creatorcontrib><description>Purpose
To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs).
Material and methods
This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time.
Results
Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B (
p
> 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s;
p
= 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm
2
and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm
2
and 10.4 ± 4.1 s;
p
= 0.025 and 0.005), respectively.
Conclusion
AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance.
Graphic abstract
These slides can be retrieved under Electronic Supplementary Material.</description><identifier>ISSN: 0940-6719</identifier><identifier>EISSN: 1432-0932</identifier><identifier>DOI: 10.1007/s00586-019-06054-6</identifier><identifier>PMID: 31270676</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial intelligence ; Augmented reality ; Bone surgery ; Clinical trials ; Compression ; Fluoroscopy ; Life Sciences ; Medicine ; Medicine & Public Health ; Neurosurgery ; Original Article ; Skin ; Surgical Orthopedics ; Vertebrae</subject><ispartof>European spine journal, 2020-07, Vol.29 (7), p.1580-1589</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</citedby><cites>FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</cites><orcidid>0000-0002-7912-5476 ; 0000-0002-0952-7760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00586-019-06054-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00586-019-06054-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31270676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-02179153$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auloge, Pierre</creatorcontrib><creatorcontrib>Cazzato, Roberto Luigi</creatorcontrib><creatorcontrib>Ramamurthy, Nitin</creatorcontrib><creatorcontrib>de Marini, Pierre</creatorcontrib><creatorcontrib>Rousseau, Chloé</creatorcontrib><creatorcontrib>Garnon, Julien</creatorcontrib><creatorcontrib>Charles, Yan Philippe</creatorcontrib><creatorcontrib>Steib, Jean-Paul</creatorcontrib><creatorcontrib>Gangi, Afshin</creatorcontrib><title>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</title><title>European spine journal</title><addtitle>Eur Spine J</addtitle><addtitle>Eur Spine J</addtitle><description>Purpose
To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs).
Material and methods
This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time.
Results
Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B (
p
> 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s;
p
= 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm
2
and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm
2
and 10.4 ± 4.1 s;
p
= 0.025 and 0.005), respectively.
Conclusion
AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance.
Graphic abstract
These slides can be retrieved under Electronic Supplementary Material.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Augmented reality</subject><subject>Bone surgery</subject><subject>Clinical trials</subject><subject>Compression</subject><subject>Fluoroscopy</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neurosurgery</subject><subject>Original Article</subject><subject>Skin</subject><subject>Surgical Orthopedics</subject><subject>Vertebrae</subject><issn>0940-6719</issn><issn>1432-0932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kcFu1DAQhi0EotvCC3BAlrjAITBjJ86a26qCFmklLnC2Jo6zuMomwXZW2jsPXoeUInHgZMn-5p8Zf4y9QniPAPWHCFBtVQGoC1BQlYV6wjZYSlGAluIp24AuoVA16gt2GeMdAFYa1HN2IVHUoGq1Yb928-HohuRaHhz1Pp05DS2nkHznraee-_zY9_7gBuuKhmImBzr5AyU_Drydgx8OfHLBzokGN86Rn1xIrgnj1FNM54-c-OT7MfGQk8ejXxJs7wdvc3oKuccL9qyjPrqXD-cV-_7507fr22L_9ebL9W5f2BJ0KrAVCrYV6koJpWsCUtRQvdUNgCsb1WroZO3sVnZOWOFqpK6xncC2bGWJQl6xd2vuD-rNFPyRwtmM5M3tbm-WOxBYa6zkCTP7dmWnMP6cXUwmT27zT6xLGiEqIVTGZUbf_IPejXMY8iYLhaWqECFTYqVsGGMMrnucAMEsPs3q02Sf5rdPo3LR64fouTm69rHkj8AMyBWI0yLChb-9_xN7D63irKY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Auloge, Pierre</creator><creator>Cazzato, Roberto Luigi</creator><creator>Ramamurthy, Nitin</creator><creator>de Marini, Pierre</creator><creator>Rousseau, Chloé</creator><creator>Garnon, Julien</creator><creator>Charles, Yan Philippe</creator><creator>Steib, Jean-Paul</creator><creator>Gangi, Afshin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7912-5476</orcidid><orcidid>https://orcid.org/0000-0002-0952-7760</orcidid></search><sort><creationdate>20200701</creationdate><title>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</title><author>Auloge, Pierre ; Cazzato, Roberto Luigi ; Ramamurthy, Nitin ; de Marini, Pierre ; Rousseau, Chloé ; Garnon, Julien ; Charles, Yan Philippe ; Steib, Jean-Paul ; Gangi, Afshin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Augmented reality</topic><topic>Bone surgery</topic><topic>Clinical trials</topic><topic>Compression</topic><topic>Fluoroscopy</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neurosurgery</topic><topic>Original Article</topic><topic>Skin</topic><topic>Surgical Orthopedics</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auloge, Pierre</creatorcontrib><creatorcontrib>Cazzato, Roberto Luigi</creatorcontrib><creatorcontrib>Ramamurthy, Nitin</creatorcontrib><creatorcontrib>de Marini, Pierre</creatorcontrib><creatorcontrib>Rousseau, Chloé</creatorcontrib><creatorcontrib>Garnon, Julien</creatorcontrib><creatorcontrib>Charles, Yan Philippe</creatorcontrib><creatorcontrib>Steib, Jean-Paul</creatorcontrib><creatorcontrib>Gangi, Afshin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auloge, Pierre</au><au>Cazzato, Roberto Luigi</au><au>Ramamurthy, Nitin</au><au>de Marini, Pierre</au><au>Rousseau, Chloé</au><au>Garnon, Julien</au><au>Charles, Yan Philippe</au><au>Steib, Jean-Paul</au><au>Gangi, Afshin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</atitle><jtitle>European spine journal</jtitle><stitle>Eur Spine J</stitle><addtitle>Eur Spine J</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>29</volume><issue>7</issue><spage>1580</spage><epage>1589</epage><pages>1580-1589</pages><issn>0940-6719</issn><eissn>1432-0932</eissn><abstract>Purpose
To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs).
Material and methods
This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time.
Results
Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B (
p
> 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s;
p
= 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm
2
and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm
2
and 10.4 ± 4.1 s;
p
= 0.025 and 0.005), respectively.
Conclusion
AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance.
Graphic abstract
These slides can be retrieved under Electronic Supplementary Material.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31270676</pmid><doi>10.1007/s00586-019-06054-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7912-5476</orcidid><orcidid>https://orcid.org/0000-0002-0952-7760</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0940-6719 |
ispartof | European spine journal, 2020-07, Vol.29 (7), p.1580-1589 |
issn | 0940-6719 1432-0932 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02179153v1 |
source | SpringerNature Journals |
subjects | Accuracy Artificial intelligence Augmented reality Bone surgery Clinical trials Compression Fluoroscopy Life Sciences Medicine Medicine & Public Health Neurosurgery Original Article Skin Surgical Orthopedics Vertebrae |
title | Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20reality%20and%20artificial%20intelligence-based%20navigation%20during%20percutaneous%20vertebroplasty:%20a%20pilot%20randomised%20clinical%20trial&rft.jtitle=European%20spine%20journal&rft.au=Auloge,%20Pierre&rft.date=2020-07-01&rft.volume=29&rft.issue=7&rft.spage=1580&rft.epage=1589&rft.pages=1580-1589&rft.issn=0940-6719&rft.eissn=1432-0932&rft_id=info:doi/10.1007/s00586-019-06054-6&rft_dat=%3Cproquest_hal_p%3E2251465110%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251465110&rft_id=info:pmid/31270676&rfr_iscdi=true |