Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial

Purpose To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs). Material and methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European spine journal 2020-07, Vol.29 (7), p.1580-1589
Hauptverfasser: Auloge, Pierre, Cazzato, Roberto Luigi, Ramamurthy, Nitin, de Marini, Pierre, Rousseau, Chloé, Garnon, Julien, Charles, Yan Philippe, Steib, Jean-Paul, Gangi, Afshin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 7
container_start_page 1580
container_title European spine journal
container_volume 29
creator Auloge, Pierre
Cazzato, Roberto Luigi
Ramamurthy, Nitin
de Marini, Pierre
Rousseau, Chloé
Garnon, Julien
Charles, Yan Philippe
Steib, Jean-Paul
Gangi, Afshin
description Purpose To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs). Material and methods This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time. Results Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B ( p  > 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s; p  = 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm 2 and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm 2 and 10.4 ± 4.1 s; p  = 0.025 and 0.005), respectively. Conclusion AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance. Graphic abstract These slides can be retrieved under Electronic Supplementary Material.
doi_str_mv 10.1007/s00586-019-06054-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02179153v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251465110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EotvCC3BAlrjAITBjJ86a26qCFmklLnC2Jo6zuMomwXZW2jsPXoeUInHgZMn-5p8Zf4y9QniPAPWHCFBtVQGoC1BQlYV6wjZYSlGAluIp24AuoVA16gt2GeMdAFYa1HN2IVHUoGq1Yb928-HohuRaHhz1Pp05DS2nkHznraee-_zY9_7gBuuKhmImBzr5AyU_Drydgx8OfHLBzokGN86Rn1xIrgnj1FNM54-c-OT7MfGQk8ejXxJs7wdvc3oKuccL9qyjPrqXD-cV-_7507fr22L_9ebL9W5f2BJ0KrAVCrYV6koJpWsCUtRQvdUNgCsb1WroZO3sVnZOWOFqpK6xncC2bGWJQl6xd2vuD-rNFPyRwtmM5M3tbm-WOxBYa6zkCTP7dmWnMP6cXUwmT27zT6xLGiEqIVTGZUbf_IPejXMY8iYLhaWqECFTYqVsGGMMrnucAMEsPs3q02Sf5rdPo3LR64fouTm69rHkj8AMyBWI0yLChb-9_xN7D63irKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251465110</pqid></control><display><type>article</type><title>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</title><source>SpringerNature Journals</source><creator>Auloge, Pierre ; Cazzato, Roberto Luigi ; Ramamurthy, Nitin ; de Marini, Pierre ; Rousseau, Chloé ; Garnon, Julien ; Charles, Yan Philippe ; Steib, Jean-Paul ; Gangi, Afshin</creator><creatorcontrib>Auloge, Pierre ; Cazzato, Roberto Luigi ; Ramamurthy, Nitin ; de Marini, Pierre ; Rousseau, Chloé ; Garnon, Julien ; Charles, Yan Philippe ; Steib, Jean-Paul ; Gangi, Afshin</creatorcontrib><description>Purpose To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs). Material and methods This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time. Results Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B ( p  &gt; 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s; p  = 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm 2 and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm 2 and 10.4 ± 4.1 s; p  = 0.025 and 0.005), respectively. Conclusion AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance. Graphic abstract These slides can be retrieved under Electronic Supplementary Material.</description><identifier>ISSN: 0940-6719</identifier><identifier>EISSN: 1432-0932</identifier><identifier>DOI: 10.1007/s00586-019-06054-6</identifier><identifier>PMID: 31270676</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial intelligence ; Augmented reality ; Bone surgery ; Clinical trials ; Compression ; Fluoroscopy ; Life Sciences ; Medicine ; Medicine &amp; Public Health ; Neurosurgery ; Original Article ; Skin ; Surgical Orthopedics ; Vertebrae</subject><ispartof>European spine journal, 2020-07, Vol.29 (7), p.1580-1589</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</citedby><cites>FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</cites><orcidid>0000-0002-7912-5476 ; 0000-0002-0952-7760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00586-019-06054-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00586-019-06054-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31270676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-02179153$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auloge, Pierre</creatorcontrib><creatorcontrib>Cazzato, Roberto Luigi</creatorcontrib><creatorcontrib>Ramamurthy, Nitin</creatorcontrib><creatorcontrib>de Marini, Pierre</creatorcontrib><creatorcontrib>Rousseau, Chloé</creatorcontrib><creatorcontrib>Garnon, Julien</creatorcontrib><creatorcontrib>Charles, Yan Philippe</creatorcontrib><creatorcontrib>Steib, Jean-Paul</creatorcontrib><creatorcontrib>Gangi, Afshin</creatorcontrib><title>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</title><title>European spine journal</title><addtitle>Eur Spine J</addtitle><addtitle>Eur Spine J</addtitle><description>Purpose To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs). Material and methods This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time. Results Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B ( p  &gt; 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s; p  = 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm 2 and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm 2 and 10.4 ± 4.1 s; p  = 0.025 and 0.005), respectively. Conclusion AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance. Graphic abstract These slides can be retrieved under Electronic Supplementary Material.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Augmented reality</subject><subject>Bone surgery</subject><subject>Clinical trials</subject><subject>Compression</subject><subject>Fluoroscopy</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurosurgery</subject><subject>Original Article</subject><subject>Skin</subject><subject>Surgical Orthopedics</subject><subject>Vertebrae</subject><issn>0940-6719</issn><issn>1432-0932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kcFu1DAQhi0EotvCC3BAlrjAITBjJ86a26qCFmklLnC2Jo6zuMomwXZW2jsPXoeUInHgZMn-5p8Zf4y9QniPAPWHCFBtVQGoC1BQlYV6wjZYSlGAluIp24AuoVA16gt2GeMdAFYa1HN2IVHUoGq1Yb928-HohuRaHhz1Pp05DS2nkHznraee-_zY9_7gBuuKhmImBzr5AyU_Drydgx8OfHLBzokGN86Rn1xIrgnj1FNM54-c-OT7MfGQk8ejXxJs7wdvc3oKuccL9qyjPrqXD-cV-_7507fr22L_9ebL9W5f2BJ0KrAVCrYV6koJpWsCUtRQvdUNgCsb1WroZO3sVnZOWOFqpK6xncC2bGWJQl6xd2vuD-rNFPyRwtmM5M3tbm-WOxBYa6zkCTP7dmWnMP6cXUwmT27zT6xLGiEqIVTGZUbf_IPejXMY8iYLhaWqECFTYqVsGGMMrnucAMEsPs3q02Sf5rdPo3LR64fouTm69rHkj8AMyBWI0yLChb-9_xN7D63irKY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Auloge, Pierre</creator><creator>Cazzato, Roberto Luigi</creator><creator>Ramamurthy, Nitin</creator><creator>de Marini, Pierre</creator><creator>Rousseau, Chloé</creator><creator>Garnon, Julien</creator><creator>Charles, Yan Philippe</creator><creator>Steib, Jean-Paul</creator><creator>Gangi, Afshin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7912-5476</orcidid><orcidid>https://orcid.org/0000-0002-0952-7760</orcidid></search><sort><creationdate>20200701</creationdate><title>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</title><author>Auloge, Pierre ; Cazzato, Roberto Luigi ; Ramamurthy, Nitin ; de Marini, Pierre ; Rousseau, Chloé ; Garnon, Julien ; Charles, Yan Philippe ; Steib, Jean-Paul ; Gangi, Afshin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-1d2608519562697a0a6aba789b00e4b6d90f37ec83fe2c2e71afbcf21d4d34123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Augmented reality</topic><topic>Bone surgery</topic><topic>Clinical trials</topic><topic>Compression</topic><topic>Fluoroscopy</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurosurgery</topic><topic>Original Article</topic><topic>Skin</topic><topic>Surgical Orthopedics</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auloge, Pierre</creatorcontrib><creatorcontrib>Cazzato, Roberto Luigi</creatorcontrib><creatorcontrib>Ramamurthy, Nitin</creatorcontrib><creatorcontrib>de Marini, Pierre</creatorcontrib><creatorcontrib>Rousseau, Chloé</creatorcontrib><creatorcontrib>Garnon, Julien</creatorcontrib><creatorcontrib>Charles, Yan Philippe</creatorcontrib><creatorcontrib>Steib, Jean-Paul</creatorcontrib><creatorcontrib>Gangi, Afshin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auloge, Pierre</au><au>Cazzato, Roberto Luigi</au><au>Ramamurthy, Nitin</au><au>de Marini, Pierre</au><au>Rousseau, Chloé</au><au>Garnon, Julien</au><au>Charles, Yan Philippe</au><au>Steib, Jean-Paul</au><au>Gangi, Afshin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial</atitle><jtitle>European spine journal</jtitle><stitle>Eur Spine J</stitle><addtitle>Eur Spine J</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>29</volume><issue>7</issue><spage>1580</spage><epage>1589</epage><pages>1580-1589</pages><issn>0940-6719</issn><eissn>1432-0932</eissn><abstract>Purpose To assess technical feasibility, accuracy, safety and patient radiation exposure of a novel navigational tool integrating augmented reality (AR) and artificial intelligence (AI), during percutaneous vertebroplasty of patients with vertebral compression fractures (VCFs). Material and methods This prospective parallel randomised open trial compared the trans-pedicular access phase of percutaneous vertebroplasty across two groups of 10 patients, electronically randomised, with symptomatic single-level VCFs. Trocar insertion was performed using AR/AI-guidance with motion compensation in Group A, and standard fluoroscopy in Group B. The primary endpoint was technical feasibility in Group A. Secondary outcomes included the comparison of Groups A and B in terms of accuracy of trocar placement (distance between planned/actual trajectory on sagittal/coronal fluoroscopic images); complications; time for trocar deployment; and radiation dose/fluoroscopy time. Results Technical feasibility in Group A was 100%. Accuracy in Group A was 1.68 ± 0.25 mm (skin entry point), and 1.02 ± 0.26 mm (trocar tip) in the sagittal plane, and 1.88 ± 0.28 mm (skin entry point) and 0.86 ± 0.17 mm (trocar tip) in the coronal plane, without any significant difference compared to Group B ( p  &gt; 0.05). No complications were observed in the entire population. Time for trocar deployment was significantly longer in Group A (642 ± 210 s) than in Group B (336 ± 60 s; p  = 0.001). Dose–area product and fluoroscopy time were significantly lower in Group A (182.6 ± 106.7 mGy cm 2 and 5.2 ± 2.6 s) than in Group B (367.8 ± 184.7 mGy cm 2 and 10.4 ± 4.1 s; p  = 0.025 and 0.005), respectively. Conclusion AR/AI-guided percutaneous vertebroplasty appears feasible, accurate and safe, and facilitates lower patient radiation exposure compared to standard fluoroscopic guidance. Graphic abstract These slides can be retrieved under Electronic Supplementary Material.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31270676</pmid><doi>10.1007/s00586-019-06054-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7912-5476</orcidid><orcidid>https://orcid.org/0000-0002-0952-7760</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0940-6719
ispartof European spine journal, 2020-07, Vol.29 (7), p.1580-1589
issn 0940-6719
1432-0932
language eng
recordid cdi_hal_primary_oai_HAL_hal_02179153v1
source SpringerNature Journals
subjects Accuracy
Artificial intelligence
Augmented reality
Bone surgery
Clinical trials
Compression
Fluoroscopy
Life Sciences
Medicine
Medicine & Public Health
Neurosurgery
Original Article
Skin
Surgical Orthopedics
Vertebrae
title Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20reality%20and%20artificial%20intelligence-based%20navigation%20during%20percutaneous%20vertebroplasty:%20a%20pilot%20randomised%20clinical%20trial&rft.jtitle=European%20spine%20journal&rft.au=Auloge,%20Pierre&rft.date=2020-07-01&rft.volume=29&rft.issue=7&rft.spage=1580&rft.epage=1589&rft.pages=1580-1589&rft.issn=0940-6719&rft.eissn=1432-0932&rft_id=info:doi/10.1007/s00586-019-06054-6&rft_dat=%3Cproquest_hal_p%3E2251465110%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251465110&rft_id=info:pmid/31270676&rfr_iscdi=true