Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation
The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu (1999 JU3) in 2018 where it will perform a survey, land and obtainsurface material, then depart in December 2019 and return to Earth in December 2020....
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2017-03, Vol.599, p.A103 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A103 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 599 |
creator | Müller, T. G. Ďurech, J. Ishiguro, M. Mueller, M. Krühler, T. Yang, H. Kim, M.-J. O’Rourke, L. Usui, F. Kiss, C. Altieri, B. Carry, B. Choi, Y.-J. Delbo, M. Emery, J. P. Greiner, J. Hasegawa, S. Hora, J. L. Knust, F. Kuroda, D. Osip, D. Rau, A. Rivkin, A. Schady, P. Thomas-Osip, J. Trilling, D. Urakawa, S. Vilenius, E. Weissman, P. Zeidler, P. |
description | The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu (1999 JU3) in 2018 where it will perform a survey, land and obtainsurface material, then depart in December 2019 and return to Earth in December 2020. We observed Ryugu with the Herschel Space Observatory in April 2012 at far-infrared thermal wavelengths, supported by several ground-based observations to obtain optical lightcurves. We reanalysed previously published Subaru-COMICS and AKARI-IRC observations and merged them with a Spitzer-IRS data set. In addition, we used a large set of Spitzer-IRAC observations obtained in the period January to May, 2013. The data set includes two complete rotational lightcurves and a series of ten “point-and-shoot” observations, all at 3.6 and 4.5 μm. The almost spherical shape of the target together with the insufficient lightcurve quality forced us to combine radiometric and lightcurve inversion techniques in different ways to find the object’s spin-axis orientation, its shape and to improve the quality of the key physical and thermal parameters. Handling thermal data in inversion techniques remains challenging: thermal inertia, roughness or local structures influence the temperature distribution on the surface. The constraints for size, spin or thermal properties therefore heavily depend on the wavelengths of the observations. We find that the solution which best matches our data sets leads to this C class asteroid having a retrograde rotation with a spin-axis orientation of (λ = 310°−340°; β = −40° ± ~ 15°) in ecliptic coordinates, an effective diameter (of an equal-volume sphere) of 850 to 880 m, a geometric albedo of 0.044 to 0.050 and a thermal inertia in the range 150 to 300 J m-2 s-0.5 K-1. Based on estimated thermal conductivities of the top-layer surface in the range 0.1 to 0.6 W K-1 m-1, we calculated that the grain sizes are approximately equal to between 1 and 10 mm. The finely constrained values for this asteroid serve as a “design reference model”, which is currently used for various planning, operational and modelling purposes by the Hayabusa-2 team. |
doi_str_mv | 10.1051/0004-6361/201629134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02178945v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891868569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-6d32bfca57242e27628b3037c90a25c121946939aa95c74fe44303596af6f9133</originalsourceid><addsrcrecordid>eNqNkc1uUzEQhS0EEiHwBGy8bBeX-v-HXRVR0ipSEVCxtCaub-KSXgfbt2p2fY2-Hk9SR0FZs7LG852jmTkIfaTkEyWSnhFCRKe4omeMUMUs5eIVmlDBWUe0UK_R5Ei8Re9KuWslo4ZP0DCHHSzHAh3D97GUmAZcIa9CxVBqyCne4uZINcffd-NqxCfUWouvbvjpZ_wjQPbrOKxwnzKu64DT8i74-vfpueCyjUMHj7HglGMYKtTm_R696WFTwod_7xTdXHz5OZt3i-uvl7PzReeFNbVTt5wtew9SM8EC04qZJSdce0uASU8ZtUJZbgGs9Fr0QYjWllZBr_q2PZ-i04PvGjZum-M95J1LEN38fOH2f219bayQD7SxJwd2m9OfMZTq2iF82GxgCGksjhrLjTFUi_9BqVFGttmmiB9Qn1MpOfTHMShx-9DcPhK3j8QdQ2uq7qCK7fiPRwnk305prqUz5JdTi29CXuiZ0_wFn4uUzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891868569</pqid></control><display><type>article</type><title>Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Müller, T. G. ; Ďurech, J. ; Ishiguro, M. ; Mueller, M. ; Krühler, T. ; Yang, H. ; Kim, M.-J. ; O’Rourke, L. ; Usui, F. ; Kiss, C. ; Altieri, B. ; Carry, B. ; Choi, Y.-J. ; Delbo, M. ; Emery, J. P. ; Greiner, J. ; Hasegawa, S. ; Hora, J. L. ; Knust, F. ; Kuroda, D. ; Osip, D. ; Rau, A. ; Rivkin, A. ; Schady, P. ; Thomas-Osip, J. ; Trilling, D. ; Urakawa, S. ; Vilenius, E. ; Weissman, P. ; Zeidler, P.</creator><creatorcontrib>Müller, T. G. ; Ďurech, J. ; Ishiguro, M. ; Mueller, M. ; Krühler, T. ; Yang, H. ; Kim, M.-J. ; O’Rourke, L. ; Usui, F. ; Kiss, C. ; Altieri, B. ; Carry, B. ; Choi, Y.-J. ; Delbo, M. ; Emery, J. P. ; Greiner, J. ; Hasegawa, S. ; Hora, J. L. ; Knust, F. ; Kuroda, D. ; Osip, D. ; Rau, A. ; Rivkin, A. ; Schady, P. ; Thomas-Osip, J. ; Trilling, D. ; Urakawa, S. ; Vilenius, E. ; Weissman, P. ; Zeidler, P.</creatorcontrib><description>The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu (1999 JU3) in 2018 where it will perform a survey, land and obtainsurface material, then depart in December 2019 and return to Earth in December 2020. We observed Ryugu with the Herschel Space Observatory in April 2012 at far-infrared thermal wavelengths, supported by several ground-based observations to obtain optical lightcurves. We reanalysed previously published Subaru-COMICS and AKARI-IRC observations and merged them with a Spitzer-IRS data set. In addition, we used a large set of Spitzer-IRAC observations obtained in the period January to May, 2013. The data set includes two complete rotational lightcurves and a series of ten “point-and-shoot” observations, all at 3.6 and 4.5 μm. The almost spherical shape of the target together with the insufficient lightcurve quality forced us to combine radiometric and lightcurve inversion techniques in different ways to find the object’s spin-axis orientation, its shape and to improve the quality of the key physical and thermal parameters. Handling thermal data in inversion techniques remains challenging: thermal inertia, roughness or local structures influence the temperature distribution on the surface. The constraints for size, spin or thermal properties therefore heavily depend on the wavelengths of the observations. We find that the solution which best matches our data sets leads to this C class asteroid having a retrograde rotation with a spin-axis orientation of (λ = 310°−340°; β = −40° ± ~ 15°) in ecliptic coordinates, an effective diameter (of an equal-volume sphere) of 850 to 880 m, a geometric albedo of 0.044 to 0.050 and a thermal inertia in the range 150 to 300 J m-2 s-0.5 K-1. Based on estimated thermal conductivities of the top-layer surface in the range 0.1 to 0.6 W K-1 m-1, we calculated that the grain sizes are approximately equal to between 1 and 10 mm. The finely constrained values for this asteroid serve as a “design reference model”, which is currently used for various planning, operational and modelling purposes by the Hayabusa-2 team.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201629134</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Asteroid missions ; Asteroids ; asteroids: individual: 162173 Ryugu (1999 JU3) ; Astrophysics ; infrared: planetary systems ; Inversions ; Mathematical models ; minor planets ; Orientation ; Physics ; radiation mechanisms: thermal ; Specific heat ; techniques: photometric ; Thermal properties ; Wavelengths</subject><ispartof>Astronomy and astrophysics (Berlin), 2017-03, Vol.599, p.A103</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-6d32bfca57242e27628b3037c90a25c121946939aa95c74fe44303596af6f9133</citedby><cites>FETCH-LOGICAL-c498t-6d32bfca57242e27628b3037c90a25c121946939aa95c74fe44303596af6f9133</cites><orcidid>0000-0001-9265-9475 ; 0000-0003-3936-0284 ; 0000-0002-7332-2479 ; 0000-0001-5242-3089 ; 0000-0002-8963-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02178945$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, T. G.</creatorcontrib><creatorcontrib>Ďurech, J.</creatorcontrib><creatorcontrib>Ishiguro, M.</creatorcontrib><creatorcontrib>Mueller, M.</creatorcontrib><creatorcontrib>Krühler, T.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Kim, M.-J.</creatorcontrib><creatorcontrib>O’Rourke, L.</creatorcontrib><creatorcontrib>Usui, F.</creatorcontrib><creatorcontrib>Kiss, C.</creatorcontrib><creatorcontrib>Altieri, B.</creatorcontrib><creatorcontrib>Carry, B.</creatorcontrib><creatorcontrib>Choi, Y.-J.</creatorcontrib><creatorcontrib>Delbo, M.</creatorcontrib><creatorcontrib>Emery, J. P.</creatorcontrib><creatorcontrib>Greiner, J.</creatorcontrib><creatorcontrib>Hasegawa, S.</creatorcontrib><creatorcontrib>Hora, J. L.</creatorcontrib><creatorcontrib>Knust, F.</creatorcontrib><creatorcontrib>Kuroda, D.</creatorcontrib><creatorcontrib>Osip, D.</creatorcontrib><creatorcontrib>Rau, A.</creatorcontrib><creatorcontrib>Rivkin, A.</creatorcontrib><creatorcontrib>Schady, P.</creatorcontrib><creatorcontrib>Thomas-Osip, J.</creatorcontrib><creatorcontrib>Trilling, D.</creatorcontrib><creatorcontrib>Urakawa, S.</creatorcontrib><creatorcontrib>Vilenius, E.</creatorcontrib><creatorcontrib>Weissman, P.</creatorcontrib><creatorcontrib>Zeidler, P.</creatorcontrib><title>Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation</title><title>Astronomy and astrophysics (Berlin)</title><description>The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu (1999 JU3) in 2018 where it will perform a survey, land and obtainsurface material, then depart in December 2019 and return to Earth in December 2020. We observed Ryugu with the Herschel Space Observatory in April 2012 at far-infrared thermal wavelengths, supported by several ground-based observations to obtain optical lightcurves. We reanalysed previously published Subaru-COMICS and AKARI-IRC observations and merged them with a Spitzer-IRS data set. In addition, we used a large set of Spitzer-IRAC observations obtained in the period January to May, 2013. The data set includes two complete rotational lightcurves and a series of ten “point-and-shoot” observations, all at 3.6 and 4.5 μm. The almost spherical shape of the target together with the insufficient lightcurve quality forced us to combine radiometric and lightcurve inversion techniques in different ways to find the object’s spin-axis orientation, its shape and to improve the quality of the key physical and thermal parameters. Handling thermal data in inversion techniques remains challenging: thermal inertia, roughness or local structures influence the temperature distribution on the surface. The constraints for size, spin or thermal properties therefore heavily depend on the wavelengths of the observations. We find that the solution which best matches our data sets leads to this C class asteroid having a retrograde rotation with a spin-axis orientation of (λ = 310°−340°; β = −40° ± ~ 15°) in ecliptic coordinates, an effective diameter (of an equal-volume sphere) of 850 to 880 m, a geometric albedo of 0.044 to 0.050 and a thermal inertia in the range 150 to 300 J m-2 s-0.5 K-1. Based on estimated thermal conductivities of the top-layer surface in the range 0.1 to 0.6 W K-1 m-1, we calculated that the grain sizes are approximately equal to between 1 and 10 mm. The finely constrained values for this asteroid serve as a “design reference model”, which is currently used for various planning, operational and modelling purposes by the Hayabusa-2 team.</description><subject>Asteroid missions</subject><subject>Asteroids</subject><subject>asteroids: individual: 162173 Ryugu (1999 JU3)</subject><subject>Astrophysics</subject><subject>infrared: planetary systems</subject><subject>Inversions</subject><subject>Mathematical models</subject><subject>minor planets</subject><subject>Orientation</subject><subject>Physics</subject><subject>radiation mechanisms: thermal</subject><subject>Specific heat</subject><subject>techniques: photometric</subject><subject>Thermal properties</subject><subject>Wavelengths</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkc1uUzEQhS0EEiHwBGy8bBeX-v-HXRVR0ipSEVCxtCaub-KSXgfbt2p2fY2-Hk9SR0FZs7LG852jmTkIfaTkEyWSnhFCRKe4omeMUMUs5eIVmlDBWUe0UK_R5Ei8Re9KuWslo4ZP0DCHHSzHAh3D97GUmAZcIa9CxVBqyCne4uZINcffd-NqxCfUWouvbvjpZ_wjQPbrOKxwnzKu64DT8i74-vfpueCyjUMHj7HglGMYKtTm_R696WFTwod_7xTdXHz5OZt3i-uvl7PzReeFNbVTt5wtew9SM8EC04qZJSdce0uASU8ZtUJZbgGs9Fr0QYjWllZBr_q2PZ-i04PvGjZum-M95J1LEN38fOH2f219bayQD7SxJwd2m9OfMZTq2iF82GxgCGksjhrLjTFUi_9BqVFGttmmiB9Qn1MpOfTHMShx-9DcPhK3j8QdQ2uq7qCK7fiPRwnk305prqUz5JdTi29CXuiZ0_wFn4uUzQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Müller, T. G.</creator><creator>Ďurech, J.</creator><creator>Ishiguro, M.</creator><creator>Mueller, M.</creator><creator>Krühler, T.</creator><creator>Yang, H.</creator><creator>Kim, M.-J.</creator><creator>O’Rourke, L.</creator><creator>Usui, F.</creator><creator>Kiss, C.</creator><creator>Altieri, B.</creator><creator>Carry, B.</creator><creator>Choi, Y.-J.</creator><creator>Delbo, M.</creator><creator>Emery, J. P.</creator><creator>Greiner, J.</creator><creator>Hasegawa, S.</creator><creator>Hora, J. L.</creator><creator>Knust, F.</creator><creator>Kuroda, D.</creator><creator>Osip, D.</creator><creator>Rau, A.</creator><creator>Rivkin, A.</creator><creator>Schady, P.</creator><creator>Thomas-Osip, J.</creator><creator>Trilling, D.</creator><creator>Urakawa, S.</creator><creator>Vilenius, E.</creator><creator>Weissman, P.</creator><creator>Zeidler, P.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9265-9475</orcidid><orcidid>https://orcid.org/0000-0003-3936-0284</orcidid><orcidid>https://orcid.org/0000-0002-7332-2479</orcidid><orcidid>https://orcid.org/0000-0001-5242-3089</orcidid><orcidid>https://orcid.org/0000-0002-8963-2404</orcidid></search><sort><creationdate>20170301</creationdate><title>Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation</title><author>Müller, T. G. ; Ďurech, J. ; Ishiguro, M. ; Mueller, M. ; Krühler, T. ; Yang, H. ; Kim, M.-J. ; O’Rourke, L. ; Usui, F. ; Kiss, C. ; Altieri, B. ; Carry, B. ; Choi, Y.-J. ; Delbo, M. ; Emery, J. P. ; Greiner, J. ; Hasegawa, S. ; Hora, J. L. ; Knust, F. ; Kuroda, D. ; Osip, D. ; Rau, A. ; Rivkin, A. ; Schady, P. ; Thomas-Osip, J. ; Trilling, D. ; Urakawa, S. ; Vilenius, E. ; Weissman, P. ; Zeidler, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-6d32bfca57242e27628b3037c90a25c121946939aa95c74fe44303596af6f9133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asteroid missions</topic><topic>Asteroids</topic><topic>asteroids: individual: 162173 Ryugu (1999 JU3)</topic><topic>Astrophysics</topic><topic>infrared: planetary systems</topic><topic>Inversions</topic><topic>Mathematical models</topic><topic>minor planets</topic><topic>Orientation</topic><topic>Physics</topic><topic>radiation mechanisms: thermal</topic><topic>Specific heat</topic><topic>techniques: photometric</topic><topic>Thermal properties</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, T. G.</creatorcontrib><creatorcontrib>Ďurech, J.</creatorcontrib><creatorcontrib>Ishiguro, M.</creatorcontrib><creatorcontrib>Mueller, M.</creatorcontrib><creatorcontrib>Krühler, T.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Kim, M.-J.</creatorcontrib><creatorcontrib>O’Rourke, L.</creatorcontrib><creatorcontrib>Usui, F.</creatorcontrib><creatorcontrib>Kiss, C.</creatorcontrib><creatorcontrib>Altieri, B.</creatorcontrib><creatorcontrib>Carry, B.</creatorcontrib><creatorcontrib>Choi, Y.-J.</creatorcontrib><creatorcontrib>Delbo, M.</creatorcontrib><creatorcontrib>Emery, J. P.</creatorcontrib><creatorcontrib>Greiner, J.</creatorcontrib><creatorcontrib>Hasegawa, S.</creatorcontrib><creatorcontrib>Hora, J. L.</creatorcontrib><creatorcontrib>Knust, F.</creatorcontrib><creatorcontrib>Kuroda, D.</creatorcontrib><creatorcontrib>Osip, D.</creatorcontrib><creatorcontrib>Rau, A.</creatorcontrib><creatorcontrib>Rivkin, A.</creatorcontrib><creatorcontrib>Schady, P.</creatorcontrib><creatorcontrib>Thomas-Osip, J.</creatorcontrib><creatorcontrib>Trilling, D.</creatorcontrib><creatorcontrib>Urakawa, S.</creatorcontrib><creatorcontrib>Vilenius, E.</creatorcontrib><creatorcontrib>Weissman, P.</creatorcontrib><creatorcontrib>Zeidler, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, T. G.</au><au>Ďurech, J.</au><au>Ishiguro, M.</au><au>Mueller, M.</au><au>Krühler, T.</au><au>Yang, H.</au><au>Kim, M.-J.</au><au>O’Rourke, L.</au><au>Usui, F.</au><au>Kiss, C.</au><au>Altieri, B.</au><au>Carry, B.</au><au>Choi, Y.-J.</au><au>Delbo, M.</au><au>Emery, J. P.</au><au>Greiner, J.</au><au>Hasegawa, S.</au><au>Hora, J. L.</au><au>Knust, F.</au><au>Kuroda, D.</au><au>Osip, D.</au><au>Rau, A.</au><au>Rivkin, A.</au><au>Schady, P.</au><au>Thomas-Osip, J.</au><au>Trilling, D.</au><au>Urakawa, S.</au><au>Vilenius, E.</au><au>Weissman, P.</au><au>Zeidler, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>599</volume><spage>A103</spage><pages>A103-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu (1999 JU3) in 2018 where it will perform a survey, land and obtainsurface material, then depart in December 2019 and return to Earth in December 2020. We observed Ryugu with the Herschel Space Observatory in April 2012 at far-infrared thermal wavelengths, supported by several ground-based observations to obtain optical lightcurves. We reanalysed previously published Subaru-COMICS and AKARI-IRC observations and merged them with a Spitzer-IRS data set. In addition, we used a large set of Spitzer-IRAC observations obtained in the period January to May, 2013. The data set includes two complete rotational lightcurves and a series of ten “point-and-shoot” observations, all at 3.6 and 4.5 μm. The almost spherical shape of the target together with the insufficient lightcurve quality forced us to combine radiometric and lightcurve inversion techniques in different ways to find the object’s spin-axis orientation, its shape and to improve the quality of the key physical and thermal parameters. Handling thermal data in inversion techniques remains challenging: thermal inertia, roughness or local structures influence the temperature distribution on the surface. The constraints for size, spin or thermal properties therefore heavily depend on the wavelengths of the observations. We find that the solution which best matches our data sets leads to this C class asteroid having a retrograde rotation with a spin-axis orientation of (λ = 310°−340°; β = −40° ± ~ 15°) in ecliptic coordinates, an effective diameter (of an equal-volume sphere) of 850 to 880 m, a geometric albedo of 0.044 to 0.050 and a thermal inertia in the range 150 to 300 J m-2 s-0.5 K-1. Based on estimated thermal conductivities of the top-layer surface in the range 0.1 to 0.6 W K-1 m-1, we calculated that the grain sizes are approximately equal to between 1 and 10 mm. The finely constrained values for this asteroid serve as a “design reference model”, which is currently used for various planning, operational and modelling purposes by the Hayabusa-2 team.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201629134</doi><orcidid>https://orcid.org/0000-0001-9265-9475</orcidid><orcidid>https://orcid.org/0000-0003-3936-0284</orcidid><orcidid>https://orcid.org/0000-0002-7332-2479</orcidid><orcidid>https://orcid.org/0000-0001-5242-3089</orcidid><orcidid>https://orcid.org/0000-0002-8963-2404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2017-03, Vol.599, p.A103 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02178945v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Asteroid missions Asteroids asteroids: individual: 162173 Ryugu (1999 JU3) Astrophysics infrared: planetary systems Inversions Mathematical models minor planets Orientation Physics radiation mechanisms: thermal Specific heat techniques: photometric Thermal properties Wavelengths |
title | Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hayabusa-2%20mission%20target%20asteroid%20162173%20Ryugu%20(1999%20JU3):%20Searching%20for%20the%20object%E2%80%99s%20spin-axis%20orientation&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=M%C3%BCller,%20T.%20G.&rft.date=2017-03-01&rft.volume=599&rft.spage=A103&rft.pages=A103-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201629134&rft_dat=%3Cproquest_hal_p%3E1891868569%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891868569&rft_id=info:pmid/&rfr_iscdi=true |