Computational insights about the dynamic behavior for the inclusion process of deprotonated and neutral aspirin in β-cyclodextrin

Molecular dynamics was used to study the inclusion of neutral and deprotonated aspirin into the β-cyclodextrin (β-CD) cavity. The molecular dynamic simulation allows following the time dependent behavior of the formation of the inclusion complex. For both complexes, we find a reasonable and a realis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Inclusion Phenomena and Macrocyclic Chemistry 2018-10, Vol.92 (1-2), p.115-127
Hauptverfasser: Bezzina, Belgacem, Djémil, Rayenne, Khatmi, Djamel eddine, Humbel, Stéphane, Carissan, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1-2
container_start_page 115
container_title Journal of Inclusion Phenomena and Macrocyclic Chemistry
container_volume 92
creator Bezzina, Belgacem
Djémil, Rayenne
Khatmi, Djamel eddine
Humbel, Stéphane
Carissan, Yannick
description Molecular dynamics was used to study the inclusion of neutral and deprotonated aspirin into the β-cyclodextrin (β-CD) cavity. The molecular dynamic simulation allows following the time dependent behavior of the formation of the inclusion complex. For both complexes, we find a reasonable and a realistic pattern of the complexation. The calculations show a single pathway consisting of a no reversible binding process leading to the complexation of aspirin. Whereas for deprotonated aspirin it has been observed a reversible binding, in which one way leads to the binding form, and the reverse way to the unbinding form. Throughout the simulation, the penetration of aspirin (ASA) or deprotonated aspirin (ASA − ) inside the cavity occurs only with a phenyl ring entering first through the wider or narrower rim. The determination of free energy using unbiased and biased simulations of the corresponding inclusion processes gives more favorable inclusion process of aspirin than deprotonated aspirin. The inclusion of the guest molecule is found deeply embedded within ASA:β-CD complex whereas it is partial in ASA − :β-CD complex. Also, the orientation A of both complexes is found more favorable of ca. 1.9 kcal/mol, and of ca. 0.8 kcal/mol, respectively for neutral and deprotonated complex. Aspirin molecule establish one H-bond between the hydrogen carboxylic atom and one oxygen atom of primary hydroxyl group of β-CD; this H-bond is detected during about 20% of the simulation period. In addition, we found that water molecules in the first solvation layer are implied with hydrogen carboxylic atom and the keto oxygen atoms within H-bonds. While, water molecules of the second solvation layer is in interact with the O1 and O2 oxygen atoms of aspirin. Accordingly, based on the obtained results we can consider that the hydrophobic/hydrophilic interactions are the most important driving forces of the complexation assisted by stabilizing H-bonds.
doi_str_mv 10.1007/s10847-018-0822-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02168191v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099969756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-df2beef4dd40212b69e532cc25ad1678de8ff00d0ee6641f514f5d38759d48d53</originalsourceid><addsrcrecordid>eNp1kctqGzEUhofSQJzLA2Qn6KoLtbrMRbM0pk0ChmzStZClo1hmPHIljam3faQ-SJ6px0xoVhUcpHP0_x9If1XdcfaFM9Z9zZypuqOMK8qUEJR9qBa86STluD7iWSpFJRfdZXWV844x0YpaLqrfq7g_TMWUEEczkDDm8LItmZhNnAopWyDuNJp9sGQDW3MMMRGPdb4Iox2mjD5ySNFCziR64gCbgqwCjpjRkRGmkpBs8iGkMKKLvP6h9mSH6OBXwdFNdeHNkOH2bb-ufnz_9rx6oOun-8fVck2t7GWhzosNgK-dq5ngYtP20EhhrWiM422nHCjvGXMMoG1r7hte-8ZJ1TW9q5Vr5HX1eeZuzaAPKexNOulogn5YrvV5hthW8Z4fBWo_zVp8zc8JctG7OCX8oawF6_u-7bumRRWfVTbFnBP4f1jO9DkWPceiMRZ9jkUz9IjZk1E7vkB6J__f9Bfck5Li</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099969756</pqid></control><display><type>article</type><title>Computational insights about the dynamic behavior for the inclusion process of deprotonated and neutral aspirin in β-cyclodextrin</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bezzina, Belgacem ; Djémil, Rayenne ; Khatmi, Djamel eddine ; Humbel, Stéphane ; Carissan, Yannick</creator><creatorcontrib>Bezzina, Belgacem ; Djémil, Rayenne ; Khatmi, Djamel eddine ; Humbel, Stéphane ; Carissan, Yannick</creatorcontrib><description>Molecular dynamics was used to study the inclusion of neutral and deprotonated aspirin into the β-cyclodextrin (β-CD) cavity. The molecular dynamic simulation allows following the time dependent behavior of the formation of the inclusion complex. For both complexes, we find a reasonable and a realistic pattern of the complexation. The calculations show a single pathway consisting of a no reversible binding process leading to the complexation of aspirin. Whereas for deprotonated aspirin it has been observed a reversible binding, in which one way leads to the binding form, and the reverse way to the unbinding form. Throughout the simulation, the penetration of aspirin (ASA) or deprotonated aspirin (ASA − ) inside the cavity occurs only with a phenyl ring entering first through the wider or narrower rim. The determination of free energy using unbiased and biased simulations of the corresponding inclusion processes gives more favorable inclusion process of aspirin than deprotonated aspirin. The inclusion of the guest molecule is found deeply embedded within ASA:β-CD complex whereas it is partial in ASA − :β-CD complex. Also, the orientation A of both complexes is found more favorable of ca. 1.9 kcal/mol, and of ca. 0.8 kcal/mol, respectively for neutral and deprotonated complex. Aspirin molecule establish one H-bond between the hydrogen carboxylic atom and one oxygen atom of primary hydroxyl group of β-CD; this H-bond is detected during about 20% of the simulation period. In addition, we found that water molecules in the first solvation layer are implied with hydrogen carboxylic atom and the keto oxygen atoms within H-bonds. While, water molecules of the second solvation layer is in interact with the O1 and O2 oxygen atoms of aspirin. Accordingly, based on the obtained results we can consider that the hydrophobic/hydrophilic interactions are the most important driving forces of the complexation assisted by stabilizing H-bonds.</description><identifier>ISSN: 1388-3127</identifier><identifier>ISSN: 0923-0750</identifier><identifier>EISSN: 1573-1111</identifier><identifier>DOI: 10.1007/s10847-018-0822-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aspirin ; Binding ; Chemical bonds ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Complexation ; Computer simulation ; Crystallography and Scattering Methods ; Cyclodextrins ; Food Science ; Free energy ; Hydroxyl groups ; Medicinal Chemistry ; Molecular dynamics ; or physical chemistry ; Organic Chemistry ; Original Article ; Oxygen atoms ; Simulation ; Solvation ; Theoretical and ; Time dependence ; Water chemistry</subject><ispartof>Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018-10, Vol.92 (1-2), p.115-127</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-df2beef4dd40212b69e532cc25ad1678de8ff00d0ee6641f514f5d38759d48d53</citedby><cites>FETCH-LOGICAL-c393t-df2beef4dd40212b69e532cc25ad1678de8ff00d0ee6641f514f5d38759d48d53</cites><orcidid>0000-0001-5405-1848 ; 0000-0002-9876-0272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10847-018-0822-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10847-018-0822-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02168191$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezzina, Belgacem</creatorcontrib><creatorcontrib>Djémil, Rayenne</creatorcontrib><creatorcontrib>Khatmi, Djamel eddine</creatorcontrib><creatorcontrib>Humbel, Stéphane</creatorcontrib><creatorcontrib>Carissan, Yannick</creatorcontrib><title>Computational insights about the dynamic behavior for the inclusion process of deprotonated and neutral aspirin in β-cyclodextrin</title><title>Journal of Inclusion Phenomena and Macrocyclic Chemistry</title><addtitle>J Incl Phenom Macrocycl Chem</addtitle><description>Molecular dynamics was used to study the inclusion of neutral and deprotonated aspirin into the β-cyclodextrin (β-CD) cavity. The molecular dynamic simulation allows following the time dependent behavior of the formation of the inclusion complex. For both complexes, we find a reasonable and a realistic pattern of the complexation. The calculations show a single pathway consisting of a no reversible binding process leading to the complexation of aspirin. Whereas for deprotonated aspirin it has been observed a reversible binding, in which one way leads to the binding form, and the reverse way to the unbinding form. Throughout the simulation, the penetration of aspirin (ASA) or deprotonated aspirin (ASA − ) inside the cavity occurs only with a phenyl ring entering first through the wider or narrower rim. The determination of free energy using unbiased and biased simulations of the corresponding inclusion processes gives more favorable inclusion process of aspirin than deprotonated aspirin. The inclusion of the guest molecule is found deeply embedded within ASA:β-CD complex whereas it is partial in ASA − :β-CD complex. Also, the orientation A of both complexes is found more favorable of ca. 1.9 kcal/mol, and of ca. 0.8 kcal/mol, respectively for neutral and deprotonated complex. Aspirin molecule establish one H-bond between the hydrogen carboxylic atom and one oxygen atom of primary hydroxyl group of β-CD; this H-bond is detected during about 20% of the simulation period. In addition, we found that water molecules in the first solvation layer are implied with hydrogen carboxylic atom and the keto oxygen atoms within H-bonds. While, water molecules of the second solvation layer is in interact with the O1 and O2 oxygen atoms of aspirin. Accordingly, based on the obtained results we can consider that the hydrophobic/hydrophilic interactions are the most important driving forces of the complexation assisted by stabilizing H-bonds.</description><subject>Aspirin</subject><subject>Binding</subject><subject>Chemical bonds</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complexation</subject><subject>Computer simulation</subject><subject>Crystallography and Scattering Methods</subject><subject>Cyclodextrins</subject><subject>Food Science</subject><subject>Free energy</subject><subject>Hydroxyl groups</subject><subject>Medicinal Chemistry</subject><subject>Molecular dynamics</subject><subject>or physical chemistry</subject><subject>Organic Chemistry</subject><subject>Original Article</subject><subject>Oxygen atoms</subject><subject>Simulation</subject><subject>Solvation</subject><subject>Theoretical and</subject><subject>Time dependence</subject><subject>Water chemistry</subject><issn>1388-3127</issn><issn>0923-0750</issn><issn>1573-1111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctqGzEUhofSQJzLA2Qn6KoLtbrMRbM0pk0ChmzStZClo1hmPHIljam3faQ-SJ6px0xoVhUcpHP0_x9If1XdcfaFM9Z9zZypuqOMK8qUEJR9qBa86STluD7iWSpFJRfdZXWV844x0YpaLqrfq7g_TMWUEEczkDDm8LItmZhNnAopWyDuNJp9sGQDW3MMMRGPdb4Iox2mjD5ySNFCziR64gCbgqwCjpjRkRGmkpBs8iGkMKKLvP6h9mSH6OBXwdFNdeHNkOH2bb-ufnz_9rx6oOun-8fVck2t7GWhzosNgK-dq5ngYtP20EhhrWiM422nHCjvGXMMoG1r7hte-8ZJ1TW9q5Vr5HX1eeZuzaAPKexNOulogn5YrvV5hthW8Z4fBWo_zVp8zc8JctG7OCX8oawF6_u-7bumRRWfVTbFnBP4f1jO9DkWPceiMRZ9jkUz9IjZk1E7vkB6J__f9Bfck5Li</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bezzina, Belgacem</creator><creator>Djémil, Rayenne</creator><creator>Khatmi, Djamel eddine</creator><creator>Humbel, Stéphane</creator><creator>Carissan, Yannick</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5405-1848</orcidid><orcidid>https://orcid.org/0000-0002-9876-0272</orcidid></search><sort><creationdate>20181001</creationdate><title>Computational insights about the dynamic behavior for the inclusion process of deprotonated and neutral aspirin in β-cyclodextrin</title><author>Bezzina, Belgacem ; Djémil, Rayenne ; Khatmi, Djamel eddine ; Humbel, Stéphane ; Carissan, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-df2beef4dd40212b69e532cc25ad1678de8ff00d0ee6641f514f5d38759d48d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aspirin</topic><topic>Binding</topic><topic>Chemical bonds</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complexation</topic><topic>Computer simulation</topic><topic>Crystallography and Scattering Methods</topic><topic>Cyclodextrins</topic><topic>Food Science</topic><topic>Free energy</topic><topic>Hydroxyl groups</topic><topic>Medicinal Chemistry</topic><topic>Molecular dynamics</topic><topic>or physical chemistry</topic><topic>Organic Chemistry</topic><topic>Original Article</topic><topic>Oxygen atoms</topic><topic>Simulation</topic><topic>Solvation</topic><topic>Theoretical and</topic><topic>Time dependence</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezzina, Belgacem</creatorcontrib><creatorcontrib>Djémil, Rayenne</creatorcontrib><creatorcontrib>Khatmi, Djamel eddine</creatorcontrib><creatorcontrib>Humbel, Stéphane</creatorcontrib><creatorcontrib>Carissan, Yannick</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Inclusion Phenomena and Macrocyclic Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezzina, Belgacem</au><au>Djémil, Rayenne</au><au>Khatmi, Djamel eddine</au><au>Humbel, Stéphane</au><au>Carissan, Yannick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational insights about the dynamic behavior for the inclusion process of deprotonated and neutral aspirin in β-cyclodextrin</atitle><jtitle>Journal of Inclusion Phenomena and Macrocyclic Chemistry</jtitle><stitle>J Incl Phenom Macrocycl Chem</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>92</volume><issue>1-2</issue><spage>115</spage><epage>127</epage><pages>115-127</pages><issn>1388-3127</issn><issn>0923-0750</issn><eissn>1573-1111</eissn><abstract>Molecular dynamics was used to study the inclusion of neutral and deprotonated aspirin into the β-cyclodextrin (β-CD) cavity. The molecular dynamic simulation allows following the time dependent behavior of the formation of the inclusion complex. For both complexes, we find a reasonable and a realistic pattern of the complexation. The calculations show a single pathway consisting of a no reversible binding process leading to the complexation of aspirin. Whereas for deprotonated aspirin it has been observed a reversible binding, in which one way leads to the binding form, and the reverse way to the unbinding form. Throughout the simulation, the penetration of aspirin (ASA) or deprotonated aspirin (ASA − ) inside the cavity occurs only with a phenyl ring entering first through the wider or narrower rim. The determination of free energy using unbiased and biased simulations of the corresponding inclusion processes gives more favorable inclusion process of aspirin than deprotonated aspirin. The inclusion of the guest molecule is found deeply embedded within ASA:β-CD complex whereas it is partial in ASA − :β-CD complex. Also, the orientation A of both complexes is found more favorable of ca. 1.9 kcal/mol, and of ca. 0.8 kcal/mol, respectively for neutral and deprotonated complex. Aspirin molecule establish one H-bond between the hydrogen carboxylic atom and one oxygen atom of primary hydroxyl group of β-CD; this H-bond is detected during about 20% of the simulation period. In addition, we found that water molecules in the first solvation layer are implied with hydrogen carboxylic atom and the keto oxygen atoms within H-bonds. While, water molecules of the second solvation layer is in interact with the O1 and O2 oxygen atoms of aspirin. Accordingly, based on the obtained results we can consider that the hydrophobic/hydrophilic interactions are the most important driving forces of the complexation assisted by stabilizing H-bonds.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10847-018-0822-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5405-1848</orcidid><orcidid>https://orcid.org/0000-0002-9876-0272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-3127
ispartof Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018-10, Vol.92 (1-2), p.115-127
issn 1388-3127
0923-0750
1573-1111
language eng
recordid cdi_hal_primary_oai_HAL_hal_02168191v2
source SpringerLink Journals - AutoHoldings
subjects Aspirin
Binding
Chemical bonds
Chemical Sciences
Chemistry
Chemistry and Materials Science
Complexation
Computer simulation
Crystallography and Scattering Methods
Cyclodextrins
Food Science
Free energy
Hydroxyl groups
Medicinal Chemistry
Molecular dynamics
or physical chemistry
Organic Chemistry
Original Article
Oxygen atoms
Simulation
Solvation
Theoretical and
Time dependence
Water chemistry
title Computational insights about the dynamic behavior for the inclusion process of deprotonated and neutral aspirin in β-cyclodextrin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20insights%20about%20the%20dynamic%20behavior%20for%20the%20inclusion%20process%20of%20deprotonated%20and%20neutral%20aspirin%20in%20%CE%B2-cyclodextrin&rft.jtitle=Journal%20of%20Inclusion%20Phenomena%20and%20Macrocyclic%20Chemistry&rft.au=Bezzina,%20Belgacem&rft.date=2018-10-01&rft.volume=92&rft.issue=1-2&rft.spage=115&rft.epage=127&rft.pages=115-127&rft.issn=1388-3127&rft.eissn=1573-1111&rft_id=info:doi/10.1007/s10847-018-0822-0&rft_dat=%3Cproquest_hal_p%3E2099969756%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099969756&rft_id=info:pmid/&rfr_iscdi=true