The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism

ABSTRACT Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological reviews of the Cambridge Philosophical Society 2019-08, Vol.94 (4), p.1338-1363
Hauptverfasser: Davesne, Donald, Meunier, François J., Schmitt, Armin D., Friedman, Matt, Otero, Olga, Benson, Roger B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1363
container_issue 4
container_start_page 1338
container_title Biological reviews of the Cambridge Philosophical Society
container_volume 94
creator Davesne, Donald
Meunier, François J.
Schmitt, Armin D.
Friedman, Matt
Otero, Olga
Benson, Roger B. J.
description ABSTRACT Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts, a group that comprises the vast majority of bony ‘fishes’, and approximately half of vertebrates. Understanding how this acellular (anosteocytic) bone appeared and was maintained in such an important vertebrate group has important implications for our understanding of the function and evolution of osteocytes. Nevertheless, although it is clear that cellular bone is ancestral for teleosts, it has not been clear in which specific subgroup the osteocytes were lost. This review aims to clarify the phylogenetic distribution of cellular and acellular bone in teleosts, to identify its precise origin, reversals to cellularity, and their implications. We surveyed the bone type for more than 600 fossil and extant ray‐finned fish species and optimised the results on recent large‐scale molecular phylogenetic trees, estimating ancestral states. We find that acellular bone is a probable synapomorphy of Euteleostei, a group uniting approximately two‐thirds of teleost species. We also confirm homoplasy in these traits: acellular bone occurs in some non‐euteleosts (although rarely), and cellular bone was reacquired several times independently within euteleosts, in salmons and relatives, tunas and the opah (Lampris sp.). The occurrence of peculiar ecological (e.g. anadromous migration) and physiological (e.g. red‐muscle endothermy) strategies in these lineages might explain the reacquisition of osteocytes. Our review supports that the main contribution of osteocytes in teleost bone is to mineral homeostasis (via osteocytic osteolysis) and not to strain detection or bone remodelling, helping to clarify their role in bone physiology.
doi_str_mv 10.1111/brv.12505
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02167990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251795433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3895-99f0b3fc84a55c8ee757a51154b79e53703d304f1b98614826a28e1a108ef0553</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMo3he-gARcuagmTdM27lS8wYAgKu5C2jmZRjLNmKQjs_HZjTNeVmaTw5_vfAR-hA4oOaHpnDZ-fkJzTvga2qZFKTJa85f15VxklWB0C-2E8EpICkq2ibYYEXmRM76NPh47wLNuYd0Eeoimxc6biemx6scY5s4O0bgeO41VC9YOVnncuB5wQiJYcCFibUIH4SxFwUy6GNIQHU4v4NpFBKyHvl1a0s5ydwpRNc6aMN1DG1rZAPvf9y56ur56vLzNRvc3d5fno6xlteCZEJo0TLd1oThva4CKV4pTyoumEsBZRdiYkULTRtQlLeq8VHkNVFFSgyacs110vPJ2ysqZN1PlF9IpI2_PR_IrIzktKyHInCb2aMXOvHsbIET56gbfp-_JPOe0Erxg7M_YeheCB_2rpUR-tSJTK3LZSmIPv41DM4XxL_lTQwJOV8C7sbD43yQvHp5Xyk-aLJa7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251795433</pqid></control><display><type>article</type><title>The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Davesne, Donald ; Meunier, François J. ; Schmitt, Armin D. ; Friedman, Matt ; Otero, Olga ; Benson, Roger B. J.</creator><creatorcontrib>Davesne, Donald ; Meunier, François J. ; Schmitt, Armin D. ; Friedman, Matt ; Otero, Olga ; Benson, Roger B. J.</creatorcontrib><description>ABSTRACT Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts, a group that comprises the vast majority of bony ‘fishes’, and approximately half of vertebrates. Understanding how this acellular (anosteocytic) bone appeared and was maintained in such an important vertebrate group has important implications for our understanding of the function and evolution of osteocytes. Nevertheless, although it is clear that cellular bone is ancestral for teleosts, it has not been clear in which specific subgroup the osteocytes were lost. This review aims to clarify the phylogenetic distribution of cellular and acellular bone in teleosts, to identify its precise origin, reversals to cellularity, and their implications. We surveyed the bone type for more than 600 fossil and extant ray‐finned fish species and optimised the results on recent large‐scale molecular phylogenetic trees, estimating ancestral states. We find that acellular bone is a probable synapomorphy of Euteleostei, a group uniting approximately two‐thirds of teleost species. We also confirm homoplasy in these traits: acellular bone occurs in some non‐euteleosts (although rarely), and cellular bone was reacquired several times independently within euteleosts, in salmons and relatives, tunas and the opah (Lampris sp.). The occurrence of peculiar ecological (e.g. anadromous migration) and physiological (e.g. red‐muscle endothermy) strategies in these lineages might explain the reacquisition of osteocytes. Our review supports that the main contribution of osteocytes in teleost bone is to mineral homeostasis (via osteocytic osteolysis) and not to strain detection or bone remodelling, helping to clarify their role in bone physiology.</description><identifier>ISSN: 1464-7931</identifier><identifier>EISSN: 1469-185X</identifier><identifier>DOI: 10.1111/brv.12505</identifier><identifier>PMID: 30924235</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>acellular bone ; Actinopterygii ; Anadromous migrations ; ancestral state reconstruction ; Animal biology ; Animals ; anosteocytic bone ; Biocompatibility ; Biodiversity ; Biological Evolution ; Bone and Bones - metabolism ; Bone remodeling ; Bone Remodeling - physiology ; bone remodelling ; Bone turnover ; Earth Sciences ; endothermy ; Evolution ; Fishes - genetics ; Fishes - physiology ; Homeostasis ; Homoplasy ; Life Sciences ; Metabolism ; Muscles ; Osteoblasts ; Osteoclasts ; osteocyte ; Osteocytes ; Osteocytes - physiology ; Osteolysis ; Paleontology ; Phylogenetics ; Phylogeny ; Physiology ; Salmoniformes ; Sciences of the Universe ; Scombridae ; Species ; Subgroups ; Synapomorphy ; Teleostei ; Vertebrate Zoology ; Vertebrates</subject><ispartof>Biological reviews of the Cambridge Philosophical Society, 2019-08, Vol.94 (4), p.1338-1363</ispartof><rights>2019 Cambridge Philosophical Society</rights><rights>2019 Cambridge Philosophical Society.</rights><rights>Biological Reviews © 2019 Cambridge Philosophical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3895-99f0b3fc84a55c8ee757a51154b79e53703d304f1b98614826a28e1a108ef0553</citedby><cites>FETCH-LOGICAL-c3895-99f0b3fc84a55c8ee757a51154b79e53703d304f1b98614826a28e1a108ef0553</cites><orcidid>0000-0001-8244-6177 ; 0000-0002-0114-7384 ; 0000-0002-8129-2054 ; 0000-0002-4775-2360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbrv.12505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbrv.12505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30924235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02167990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Davesne, Donald</creatorcontrib><creatorcontrib>Meunier, François J.</creatorcontrib><creatorcontrib>Schmitt, Armin D.</creatorcontrib><creatorcontrib>Friedman, Matt</creatorcontrib><creatorcontrib>Otero, Olga</creatorcontrib><creatorcontrib>Benson, Roger B. J.</creatorcontrib><title>The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism</title><title>Biological reviews of the Cambridge Philosophical Society</title><addtitle>Biol Rev Camb Philos Soc</addtitle><description>ABSTRACT Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts, a group that comprises the vast majority of bony ‘fishes’, and approximately half of vertebrates. Understanding how this acellular (anosteocytic) bone appeared and was maintained in such an important vertebrate group has important implications for our understanding of the function and evolution of osteocytes. Nevertheless, although it is clear that cellular bone is ancestral for teleosts, it has not been clear in which specific subgroup the osteocytes were lost. This review aims to clarify the phylogenetic distribution of cellular and acellular bone in teleosts, to identify its precise origin, reversals to cellularity, and their implications. We surveyed the bone type for more than 600 fossil and extant ray‐finned fish species and optimised the results on recent large‐scale molecular phylogenetic trees, estimating ancestral states. We find that acellular bone is a probable synapomorphy of Euteleostei, a group uniting approximately two‐thirds of teleost species. We also confirm homoplasy in these traits: acellular bone occurs in some non‐euteleosts (although rarely), and cellular bone was reacquired several times independently within euteleosts, in salmons and relatives, tunas and the opah (Lampris sp.). The occurrence of peculiar ecological (e.g. anadromous migration) and physiological (e.g. red‐muscle endothermy) strategies in these lineages might explain the reacquisition of osteocytes. Our review supports that the main contribution of osteocytes in teleost bone is to mineral homeostasis (via osteocytic osteolysis) and not to strain detection or bone remodelling, helping to clarify their role in bone physiology.</description><subject>acellular bone</subject><subject>Actinopterygii</subject><subject>Anadromous migrations</subject><subject>ancestral state reconstruction</subject><subject>Animal biology</subject><subject>Animals</subject><subject>anosteocytic bone</subject><subject>Biocompatibility</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Bone and Bones - metabolism</subject><subject>Bone remodeling</subject><subject>Bone Remodeling - physiology</subject><subject>bone remodelling</subject><subject>Bone turnover</subject><subject>Earth Sciences</subject><subject>endothermy</subject><subject>Evolution</subject><subject>Fishes - genetics</subject><subject>Fishes - physiology</subject><subject>Homeostasis</subject><subject>Homoplasy</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Muscles</subject><subject>Osteoblasts</subject><subject>Osteoclasts</subject><subject>osteocyte</subject><subject>Osteocytes</subject><subject>Osteocytes - physiology</subject><subject>Osteolysis</subject><subject>Paleontology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Salmoniformes</subject><subject>Sciences of the Universe</subject><subject>Scombridae</subject><subject>Species</subject><subject>Subgroups</subject><subject>Synapomorphy</subject><subject>Teleostei</subject><subject>Vertebrate Zoology</subject><subject>Vertebrates</subject><issn>1464-7931</issn><issn>1469-185X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKxDAUhoMo3he-gARcuagmTdM27lS8wYAgKu5C2jmZRjLNmKQjs_HZjTNeVmaTw5_vfAR-hA4oOaHpnDZ-fkJzTvga2qZFKTJa85f15VxklWB0C-2E8EpICkq2ibYYEXmRM76NPh47wLNuYd0Eeoimxc6biemx6scY5s4O0bgeO41VC9YOVnncuB5wQiJYcCFibUIH4SxFwUy6GNIQHU4v4NpFBKyHvl1a0s5ydwpRNc6aMN1DG1rZAPvf9y56ur56vLzNRvc3d5fno6xlteCZEJo0TLd1oThva4CKV4pTyoumEsBZRdiYkULTRtQlLeq8VHkNVFFSgyacs110vPJ2ysqZN1PlF9IpI2_PR_IrIzktKyHInCb2aMXOvHsbIET56gbfp-_JPOe0Erxg7M_YeheCB_2rpUR-tSJTK3LZSmIPv41DM4XxL_lTQwJOV8C7sbD43yQvHp5Xyk-aLJa7</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Davesne, Donald</creator><creator>Meunier, François J.</creator><creator>Schmitt, Armin D.</creator><creator>Friedman, Matt</creator><creator>Otero, Olga</creator><creator>Benson, Roger B. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8244-6177</orcidid><orcidid>https://orcid.org/0000-0002-0114-7384</orcidid><orcidid>https://orcid.org/0000-0002-8129-2054</orcidid><orcidid>https://orcid.org/0000-0002-4775-2360</orcidid></search><sort><creationdate>201908</creationdate><title>The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism</title><author>Davesne, Donald ; Meunier, François J. ; Schmitt, Armin D. ; Friedman, Matt ; Otero, Olga ; Benson, Roger B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3895-99f0b3fc84a55c8ee757a51154b79e53703d304f1b98614826a28e1a108ef0553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acellular bone</topic><topic>Actinopterygii</topic><topic>Anadromous migrations</topic><topic>ancestral state reconstruction</topic><topic>Animal biology</topic><topic>Animals</topic><topic>anosteocytic bone</topic><topic>Biocompatibility</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Bone and Bones - metabolism</topic><topic>Bone remodeling</topic><topic>Bone Remodeling - physiology</topic><topic>bone remodelling</topic><topic>Bone turnover</topic><topic>Earth Sciences</topic><topic>endothermy</topic><topic>Evolution</topic><topic>Fishes - genetics</topic><topic>Fishes - physiology</topic><topic>Homeostasis</topic><topic>Homoplasy</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Muscles</topic><topic>Osteoblasts</topic><topic>Osteoclasts</topic><topic>osteocyte</topic><topic>Osteocytes</topic><topic>Osteocytes - physiology</topic><topic>Osteolysis</topic><topic>Paleontology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Salmoniformes</topic><topic>Sciences of the Universe</topic><topic>Scombridae</topic><topic>Species</topic><topic>Subgroups</topic><topic>Synapomorphy</topic><topic>Teleostei</topic><topic>Vertebrate Zoology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davesne, Donald</creatorcontrib><creatorcontrib>Meunier, François J.</creatorcontrib><creatorcontrib>Schmitt, Armin D.</creatorcontrib><creatorcontrib>Friedman, Matt</creatorcontrib><creatorcontrib>Otero, Olga</creatorcontrib><creatorcontrib>Benson, Roger B. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davesne, Donald</au><au>Meunier, François J.</au><au>Schmitt, Armin D.</au><au>Friedman, Matt</au><au>Otero, Olga</au><au>Benson, Roger B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism</atitle><jtitle>Biological reviews of the Cambridge Philosophical Society</jtitle><addtitle>Biol Rev Camb Philos Soc</addtitle><date>2019-08</date><risdate>2019</risdate><volume>94</volume><issue>4</issue><spage>1338</spage><epage>1363</epage><pages>1338-1363</pages><issn>1464-7931</issn><eissn>1469-185X</eissn><abstract>ABSTRACT Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts, a group that comprises the vast majority of bony ‘fishes’, and approximately half of vertebrates. Understanding how this acellular (anosteocytic) bone appeared and was maintained in such an important vertebrate group has important implications for our understanding of the function and evolution of osteocytes. Nevertheless, although it is clear that cellular bone is ancestral for teleosts, it has not been clear in which specific subgroup the osteocytes were lost. This review aims to clarify the phylogenetic distribution of cellular and acellular bone in teleosts, to identify its precise origin, reversals to cellularity, and their implications. We surveyed the bone type for more than 600 fossil and extant ray‐finned fish species and optimised the results on recent large‐scale molecular phylogenetic trees, estimating ancestral states. We find that acellular bone is a probable synapomorphy of Euteleostei, a group uniting approximately two‐thirds of teleost species. We also confirm homoplasy in these traits: acellular bone occurs in some non‐euteleosts (although rarely), and cellular bone was reacquired several times independently within euteleosts, in salmons and relatives, tunas and the opah (Lampris sp.). The occurrence of peculiar ecological (e.g. anadromous migration) and physiological (e.g. red‐muscle endothermy) strategies in these lineages might explain the reacquisition of osteocytes. Our review supports that the main contribution of osteocytes in teleost bone is to mineral homeostasis (via osteocytic osteolysis) and not to strain detection or bone remodelling, helping to clarify their role in bone physiology.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>30924235</pmid><doi>10.1111/brv.12505</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8244-6177</orcidid><orcidid>https://orcid.org/0000-0002-0114-7384</orcidid><orcidid>https://orcid.org/0000-0002-8129-2054</orcidid><orcidid>https://orcid.org/0000-0002-4775-2360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7931
ispartof Biological reviews of the Cambridge Philosophical Society, 2019-08, Vol.94 (4), p.1338-1363
issn 1464-7931
1469-185X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02167990v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects acellular bone
Actinopterygii
Anadromous migrations
ancestral state reconstruction
Animal biology
Animals
anosteocytic bone
Biocompatibility
Biodiversity
Biological Evolution
Bone and Bones - metabolism
Bone remodeling
Bone Remodeling - physiology
bone remodelling
Bone turnover
Earth Sciences
endothermy
Evolution
Fishes - genetics
Fishes - physiology
Homeostasis
Homoplasy
Life Sciences
Metabolism
Muscles
Osteoblasts
Osteoclasts
osteocyte
Osteocytes
Osteocytes - physiology
Osteolysis
Paleontology
Phylogenetics
Phylogeny
Physiology
Salmoniformes
Sciences of the Universe
Scombridae
Species
Subgroups
Synapomorphy
Teleostei
Vertebrate Zoology
Vertebrates
title The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phylogenetic%20origin%20and%20evolution%20of%20acellular%20bone%20in%20teleost%20fishes:%20insights%20into%20osteocyte%20function%20in%20bone%20metabolism&rft.jtitle=Biological%20reviews%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Davesne,%20Donald&rft.date=2019-08&rft.volume=94&rft.issue=4&rft.spage=1338&rft.epage=1363&rft.pages=1338-1363&rft.issn=1464-7931&rft.eissn=1469-185X&rft_id=info:doi/10.1111/brv.12505&rft_dat=%3Cproquest_hal_p%3E2251795433%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251795433&rft_id=info:pmid/30924235&rfr_iscdi=true