An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres

Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-07, Vol.843 (2), p.144
Hauptverfasser: Thygesen, Anders O., Kirby, Evan N., Gallagher, Andrew J., Ludwig, Hans-G., Caffau, Elisabetta, Bonifacio, Piercarlo, Sbordone, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 144
container_title The Astrophysical journal
container_volume 843
creator Thygesen, Anders O.
Kirby, Evan N.
Gallagher, Andrew J.
Ludwig, Hans-G.
Caffau, Elisabetta
Bonifacio, Piercarlo
Sbordone, Luca
description Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5BOLD models of dwarfs (4000 K Teff 5160 K, 4.0 ≤ ≤ 4.5, ) and giants (Teff ∼ 4000 K, = 1.5, ), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex, with the largest for our 5000 K models. The corrections are correlated with Teff and are also affected by the metallicity. The shape of the strong 24MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25Mg by up to ∼5 percentage points and overestimating 24Mg by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26Mg is recovered relatively well, with the largest difference being ∼2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.
doi_str_mv 10.3847/1538-4357/aa79a0
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02166801v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365918266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-6b0684b678350f974e14daa7311158e33fcb0d99c04477643e1b1f845df5f9ed3</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVIoU7afZeC0EWhk-g1kmZp8qgDDi20he6ErEcsdyxNJTngf98ZpiSbdHW5h-8eOPcA8AGjSyqZuMItlQ2jrbjSWnQanYDFs3QKFggh1nAqfr0FZ6XsppV03QL8XkZ4H59cqeFR15AiTB7WrYN3Ke9nQUcL1yE6-C2nweUaXJmgh8cVDBHSG7g62pzsMep9MLqHD8m6Hn6vru91hsu6T2XYuuzKO_DG67649__mOfh5d_vjetWsv365v16uG8MYqQ3fIC7ZhgtJW-Q7wRxmdgxFMcatdJR6s0G26wxiTAjOqMMb7CVrrW995yw9BxezbxpTqWJCdWZrUozOVEWIFBwROVKfZmqrezXksNf5qJIOarVcq0lDBHMuEX7CL45DTn8O47PULh1yHEMoQnnbYUk4Hyk0UyanUrLzz7YYqakkNTWipkbUXNJ48nE-CWl48dTDTklGFVGYMTVYP3KfX-H-a_sXm_idSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365918266</pqid></control><display><type>article</type><title>An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres</title><source>Institute of Physics Open Access Journal Titles</source><creator>Thygesen, Anders O. ; Kirby, Evan N. ; Gallagher, Andrew J. ; Ludwig, Hans-G. ; Caffau, Elisabetta ; Bonifacio, Piercarlo ; Sbordone, Luca</creator><creatorcontrib>Thygesen, Anders O. ; Kirby, Evan N. ; Gallagher, Andrew J. ; Ludwig, Hans-G. ; Caffau, Elisabetta ; Bonifacio, Piercarlo ; Sbordone, Luca</creatorcontrib><description>Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5BOLD models of dwarfs (4000 K Teff 5160 K, 4.0 ≤ ≤ 4.5, ) and giants (Teff ∼ 4000 K, = 1.5, ), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex, with the largest for our 5000 K models. The corrections are correlated with Teff and are also affected by the metallicity. The shape of the strong 24MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25Mg by up to ∼5 percentage points and overestimating 24Mg by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26Mg is recovered relatively well, with the largest difference being ∼2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa79a0</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; ASYMMETRY ; Atmosphere ; Atmospheric models ; Atmospheric structure ; COMPARATIVE EVALUATIONS ; COMPUTERIZED SIMULATION ; Convection ; Cool stars ; CORRECTIONS ; ELEMENT ABUNDANCE ; HYDRODYNAMICS ; Iron ; Isotope composition ; ISOTOPE RATIO ; Line shape ; line: formation ; line: profiles ; MAGNESIUM ; MAGNESIUM 24 ; MAGNESIUM 25 ; MAGNESIUM 26 ; METALLICITY ; molecular processes ; One dimensional models ; Physics ; STARS ; stars: atmospheres ; STELLAR ATMOSPHERES ; Stellar convection ; Stellar models ; SYNTHESIS ; Systematics ; techniques: spectroscopic ; Three dimensional models</subject><ispartof>The Astrophysical journal, 2017-07, Vol.843 (2), p.144</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 10, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-6b0684b678350f974e14daa7311158e33fcb0d99c04477643e1b1f845df5f9ed3</citedby><cites>FETCH-LOGICAL-c442t-6b0684b678350f974e14daa7311158e33fcb0d99c04477643e1b1f845df5f9ed3</cites><orcidid>0000-0001-6196-5162 ; 0000-0003-3014-8981 ; 0000-0002-4912-1183 ; 0000-0001-6011-6134 ; 0000-0002-1014-0635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa79a0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa79a0$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-02166801$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22876028$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thygesen, Anders O.</creatorcontrib><creatorcontrib>Kirby, Evan N.</creatorcontrib><creatorcontrib>Gallagher, Andrew J.</creatorcontrib><creatorcontrib>Ludwig, Hans-G.</creatorcontrib><creatorcontrib>Caffau, Elisabetta</creatorcontrib><creatorcontrib>Bonifacio, Piercarlo</creatorcontrib><creatorcontrib>Sbordone, Luca</creatorcontrib><title>An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5BOLD models of dwarfs (4000 K Teff 5160 K, 4.0 ≤ ≤ 4.5, ) and giants (Teff ∼ 4000 K, = 1.5, ), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex, with the largest for our 5000 K models. The corrections are correlated with Teff and are also affected by the metallicity. The shape of the strong 24MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25Mg by up to ∼5 percentage points and overestimating 24Mg by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26Mg is recovered relatively well, with the largest difference being ∼2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>ASYMMETRY</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Atmospheric structure</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Convection</subject><subject>Cool stars</subject><subject>CORRECTIONS</subject><subject>ELEMENT ABUNDANCE</subject><subject>HYDRODYNAMICS</subject><subject>Iron</subject><subject>Isotope composition</subject><subject>ISOTOPE RATIO</subject><subject>Line shape</subject><subject>line: formation</subject><subject>line: profiles</subject><subject>MAGNESIUM</subject><subject>MAGNESIUM 24</subject><subject>MAGNESIUM 25</subject><subject>MAGNESIUM 26</subject><subject>METALLICITY</subject><subject>molecular processes</subject><subject>One dimensional models</subject><subject>Physics</subject><subject>STARS</subject><subject>stars: atmospheres</subject><subject>STELLAR ATMOSPHERES</subject><subject>Stellar convection</subject><subject>Stellar models</subject><subject>SYNTHESIS</subject><subject>Systematics</subject><subject>techniques: spectroscopic</subject><subject>Three dimensional models</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kUtrGzEUhUVIoU7afZeC0EWhk-g1kmZp8qgDDi20he6ErEcsdyxNJTngf98ZpiSbdHW5h-8eOPcA8AGjSyqZuMItlQ2jrbjSWnQanYDFs3QKFggh1nAqfr0FZ6XsppV03QL8XkZ4H59cqeFR15AiTB7WrYN3Ke9nQUcL1yE6-C2nweUaXJmgh8cVDBHSG7g62pzsMep9MLqHD8m6Hn6vru91hsu6T2XYuuzKO_DG67649__mOfh5d_vjetWsv365v16uG8MYqQ3fIC7ZhgtJW-Q7wRxmdgxFMcatdJR6s0G26wxiTAjOqMMb7CVrrW995yw9BxezbxpTqWJCdWZrUozOVEWIFBwROVKfZmqrezXksNf5qJIOarVcq0lDBHMuEX7CL45DTn8O47PULh1yHEMoQnnbYUk4Hyk0UyanUrLzz7YYqakkNTWipkbUXNJ48nE-CWl48dTDTklGFVGYMTVYP3KfX-H-a_sXm_idSQ</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Thygesen, Anders O.</creator><creator>Kirby, Evan N.</creator><creator>Gallagher, Andrew J.</creator><creator>Ludwig, Hans-G.</creator><creator>Caffau, Elisabetta</creator><creator>Bonifacio, Piercarlo</creator><creator>Sbordone, Luca</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6196-5162</orcidid><orcidid>https://orcid.org/0000-0003-3014-8981</orcidid><orcidid>https://orcid.org/0000-0002-4912-1183</orcidid><orcidid>https://orcid.org/0000-0001-6011-6134</orcidid><orcidid>https://orcid.org/0000-0002-1014-0635</orcidid></search><sort><creationdate>20170710</creationdate><title>An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres</title><author>Thygesen, Anders O. ; Kirby, Evan N. ; Gallagher, Andrew J. ; Ludwig, Hans-G. ; Caffau, Elisabetta ; Bonifacio, Piercarlo ; Sbordone, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-6b0684b678350f974e14daa7311158e33fcb0d99c04477643e1b1f845df5f9ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>ASYMMETRY</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Atmospheric structure</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Convection</topic><topic>Cool stars</topic><topic>CORRECTIONS</topic><topic>ELEMENT ABUNDANCE</topic><topic>HYDRODYNAMICS</topic><topic>Iron</topic><topic>Isotope composition</topic><topic>ISOTOPE RATIO</topic><topic>Line shape</topic><topic>line: formation</topic><topic>line: profiles</topic><topic>MAGNESIUM</topic><topic>MAGNESIUM 24</topic><topic>MAGNESIUM 25</topic><topic>MAGNESIUM 26</topic><topic>METALLICITY</topic><topic>molecular processes</topic><topic>One dimensional models</topic><topic>Physics</topic><topic>STARS</topic><topic>stars: atmospheres</topic><topic>STELLAR ATMOSPHERES</topic><topic>Stellar convection</topic><topic>Stellar models</topic><topic>SYNTHESIS</topic><topic>Systematics</topic><topic>techniques: spectroscopic</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thygesen, Anders O.</creatorcontrib><creatorcontrib>Kirby, Evan N.</creatorcontrib><creatorcontrib>Gallagher, Andrew J.</creatorcontrib><creatorcontrib>Ludwig, Hans-G.</creatorcontrib><creatorcontrib>Caffau, Elisabetta</creatorcontrib><creatorcontrib>Bonifacio, Piercarlo</creatorcontrib><creatorcontrib>Sbordone, Luca</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thygesen, Anders O.</au><au>Kirby, Evan N.</au><au>Gallagher, Andrew J.</au><au>Ludwig, Hans-G.</au><au>Caffau, Elisabetta</au><au>Bonifacio, Piercarlo</au><au>Sbordone, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-07-10</date><risdate>2017</risdate><volume>843</volume><issue>2</issue><spage>144</spage><pages>144-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5BOLD models of dwarfs (4000 K Teff 5160 K, 4.0 ≤ ≤ 4.5, ) and giants (Teff ∼ 4000 K, = 1.5, ), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex, with the largest for our 5000 K models. The corrections are correlated with Teff and are also affected by the metallicity. The shape of the strong 24MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25Mg by up to ∼5 percentage points and overestimating 24Mg by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26Mg is recovered relatively well, with the largest difference being ∼2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa79a0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6196-5162</orcidid><orcidid>https://orcid.org/0000-0003-3014-8981</orcidid><orcidid>https://orcid.org/0000-0002-4912-1183</orcidid><orcidid>https://orcid.org/0000-0001-6011-6134</orcidid><orcidid>https://orcid.org/0000-0002-1014-0635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-07, Vol.843 (2), p.144
issn 0004-637X
1538-4357
language eng
recordid cdi_hal_primary_oai_HAL_hal_02166801v1
source Institute of Physics Open Access Journal Titles
subjects Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
ASYMMETRY
Atmosphere
Atmospheric models
Atmospheric structure
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
Convection
Cool stars
CORRECTIONS
ELEMENT ABUNDANCE
HYDRODYNAMICS
Iron
Isotope composition
ISOTOPE RATIO
Line shape
line: formation
line: profiles
MAGNESIUM
MAGNESIUM 24
MAGNESIUM 25
MAGNESIUM 26
METALLICITY
molecular processes
One dimensional models
Physics
STARS
stars: atmospheres
STELLAR ATMOSPHERES
Stellar convection
Stellar models
SYNTHESIS
Systematics
techniques: spectroscopic
Three dimensional models
title An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Investigation%20of%20the%20Formation%20and%20Line%20Properties%20of%20MgH%20in%203D%20Hydrodynamical%20Model%20Stellar%20Atmospheres&rft.jtitle=The%20Astrophysical%20journal&rft.au=Thygesen,%20Anders%20O.&rft.date=2017-07-10&rft.volume=843&rft.issue=2&rft.spage=144&rft.pages=144-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa79a0&rft_dat=%3Cproquest_O3W%3E2365918266%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365918266&rft_id=info:pmid/&rfr_iscdi=true