Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system
Interaction of the p85 subunit of PI 3-kinase with the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) was investigated using the two-hybrid system by assessing for his3 and lacZ activation in S. cerevisiae. The experiments were performed with the cytoplasmic β domain (wild type or mutated) of...
Gespeichert in:
Veröffentlicht in: | FEBS letters 1995-10, Vol.373 (1), p.51-55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | FEBS letters |
container_volume | 373 |
creator | Lamothe, B. Bucchini, D. Jami, J. Joshi, R.L. |
description | Interaction of the p85 subunit of PI 3-kinase with the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) was investigated using the two-hybrid system by assessing for
his3 and
lacZ activation in
S. cerevisiae. The experiments were performed with the cytoplasmic β domain (wild type or mutated) of IR and IGF-1R and p85 or its subdomains (N + C-SH2, N-SH2, C-SH2, SH3 + N-SH2). The results of
his3 activation indicated that p85, N + C-SH2 and C-SH2 interact with both IRβ and IGF-1Rβ, whereas N-SH2 and SH3 + N-SH2 interact only with IRβ. Interaction of p85 and N + C-SH2 with IRβ(ΔC-43) or IGF-1Rβ(ΔC-43) in which the C-terminal 43 amino acids (including the YXXM motif) were deleted, persisted. The internal binding site thus revealed was not altered by further mutating Y
960/F for IR or Y
950/F for IGF-1R. Activation of
lacZ upon interaction of p85 with IRβ(ΔC-43) was 4-fold less as compared to IRβ. This activation with p85 and IGF-1Rβ was 4-fold less as compared to IRβ and was somewhat increased (2-fold) for IGE-1Rβ(ΔC-43). Thus, the C-terminal domain in IGF-1R appears to exert a negative control on binding of p85 thereby providing a possible regulatory mechanism for direct activation of the PI 3-kinase pathway. |
doi_str_mv | 10.1016/0014-5793(95)01011-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02160151v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0014579395010113</els_id><sourcerecordid>77542254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-1f12bf3e83f365916400ceb7c1a5d6bda8d44f450afaf50ea072bf16f465ebe13</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EKkPhDUDyCtFFwI5_kmyQStVpRxoJFrC2HOeaMWScwXY6ytsTN6NZVl1Z95zvHln3IPSeks-UUPmFEMoLUTXsUyOuyCzRgr1AK1pXrGBc1i_R6oy8Rm9i_EPmuabNBbqoRN1wxlYobHyCoE1yg8eDxYda4Di2o3cpjz82mBV_ndcR8NGlHXY-jr3zWPsOb-7WBcUBDBzSEOKs6X6K0OF2wmN0_jdOO8DpOBS7qQ2uw3GKCfZv0Sur-wjvTu8l-rW-_XlzX2y_321urreFYbJhBbW0bC2DmlkmRUMlJ8RAWxmqRSfbTtcd55YLoq22goAm1cxTabkU0AJll-hqyd3pXh2C2-swqUE7dX-9VVkjJZWECvqQ2Y8LewjDvxFiUnsXDfS99jCMUVWV4GUp-AzyBTRhiDGAPSdTonItKt9c5ZurRqjHWhSb1z6c8sd2D9156dTD7K8X_-h6mJ6Vqda338psZL0Rj2oO-roEwXzZBwdBRePAG-jcXFRS3eCe_ul_j36uKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77542254</pqid></control><display><type>article</type><title>Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>Lamothe, B. ; Bucchini, D. ; Jami, J. ; Joshi, R.L.</creator><creatorcontrib>Lamothe, B. ; Bucchini, D. ; Jami, J. ; Joshi, R.L.</creatorcontrib><description>Interaction of the p85 subunit of PI 3-kinase with the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) was investigated using the two-hybrid system by assessing for
his3 and
lacZ activation in
S. cerevisiae. The experiments were performed with the cytoplasmic β domain (wild type or mutated) of IR and IGF-1R and p85 or its subdomains (N + C-SH2, N-SH2, C-SH2, SH3 + N-SH2). The results of
his3 activation indicated that p85, N + C-SH2 and C-SH2 interact with both IRβ and IGF-1Rβ, whereas N-SH2 and SH3 + N-SH2 interact only with IRβ. Interaction of p85 and N + C-SH2 with IRβ(ΔC-43) or IGF-1Rβ(ΔC-43) in which the C-terminal 43 amino acids (including the YXXM motif) were deleted, persisted. The internal binding site thus revealed was not altered by further mutating Y
960/F for IR or Y
950/F for IGF-1R. Activation of
lacZ upon interaction of p85 with IRβ(ΔC-43) was 4-fold less as compared to IRβ. This activation with p85 and IGF-1Rβ was 4-fold less as compared to IRβ and was somewhat increased (2-fold) for IGE-1Rβ(ΔC-43). Thus, the C-terminal domain in IGF-1R appears to exert a negative control on binding of p85 thereby providing a possible regulatory mechanism for direct activation of the PI 3-kinase pathway.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/0014-5793(95)01011-3</identifier><identifier>PMID: 7589433</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>aa, amino acid ; Amino Acid Sequence ; Animals ; Bacterial Proteins ; Bacterial Proteins - analysis ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - metabolism ; Base Sequence ; beta-Galactosidase ; beta-Galactosidase - analysis ; beta-Galactosidase - biosynthesis ; beta-Galactosidase - metabolism ; Blotting, Western ; C, Cys ; DNA Primers ; Escherichia coli ; H, His ; IGF-1 receptor ; IGF-1, insulin-like growth factor-1 ; Insulin ; Insulin - metabolism ; Insulin receptor ; Life Sciences ; M, Met ; Macromolecular Substances ; Molecular Sequence Data ; N, Asn ; P, Pro ; Phosphatidylinositol 3-kinase ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor) ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Phosphotransferases (Alcohol Group Acceptor) - isolation & purification ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; PI 3-kinase, phosphatidylinositol 3-kinase ; Polymerase Chain Reaction ; R, Arg ; Receptor, IGF Type 1 ; Receptor, IGF Type 1 - biosynthesis ; Receptor, IGF Type 1 - isolation & purification ; Receptor, IGF Type 1 - metabolism ; Recombinant Fusion Proteins ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - isolation & purification ; Recombinant Fusion Proteins - metabolism ; Recombinant Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Serine Endopeptidases ; Signal transduction ; T, Thr ; Two-hybrid system ; X, any of the 20 aa ; Y, Tyr</subject><ispartof>FEBS letters, 1995-10, Vol.373 (1), p.51-55</ispartof><rights>1995</rights><rights>FEBS Letters 373 (1995) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-1f12bf3e83f365916400ceb7c1a5d6bda8d44f450afaf50ea072bf16f465ebe13</citedby><cites>FETCH-LOGICAL-c3693-1f12bf3e83f365916400ceb7c1a5d6bda8d44f450afaf50ea072bf16f465ebe13</cites><orcidid>0000-0002-1678-0529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0014-5793(95)01011-3$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7589433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02160151$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamothe, B.</creatorcontrib><creatorcontrib>Bucchini, D.</creatorcontrib><creatorcontrib>Jami, J.</creatorcontrib><creatorcontrib>Joshi, R.L.</creatorcontrib><title>Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Interaction of the p85 subunit of PI 3-kinase with the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) was investigated using the two-hybrid system by assessing for
his3 and
lacZ activation in
S. cerevisiae. The experiments were performed with the cytoplasmic β domain (wild type or mutated) of IR and IGF-1R and p85 or its subdomains (N + C-SH2, N-SH2, C-SH2, SH3 + N-SH2). The results of
his3 activation indicated that p85, N + C-SH2 and C-SH2 interact with both IRβ and IGF-1Rβ, whereas N-SH2 and SH3 + N-SH2 interact only with IRβ. Interaction of p85 and N + C-SH2 with IRβ(ΔC-43) or IGF-1Rβ(ΔC-43) in which the C-terminal 43 amino acids (including the YXXM motif) were deleted, persisted. The internal binding site thus revealed was not altered by further mutating Y
960/F for IR or Y
950/F for IGF-1R. Activation of
lacZ upon interaction of p85 with IRβ(ΔC-43) was 4-fold less as compared to IRβ. This activation with p85 and IGF-1Rβ was 4-fold less as compared to IRβ and was somewhat increased (2-fold) for IGE-1Rβ(ΔC-43). Thus, the C-terminal domain in IGF-1R appears to exert a negative control on binding of p85 thereby providing a possible regulatory mechanism for direct activation of the PI 3-kinase pathway.</description><subject>aa, amino acid</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - analysis</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>beta-Galactosidase</subject><subject>beta-Galactosidase - analysis</subject><subject>beta-Galactosidase - biosynthesis</subject><subject>beta-Galactosidase - metabolism</subject><subject>Blotting, Western</subject><subject>C, Cys</subject><subject>DNA Primers</subject><subject>Escherichia coli</subject><subject>H, His</subject><subject>IGF-1 receptor</subject><subject>IGF-1, insulin-like growth factor-1</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin receptor</subject><subject>Life Sciences</subject><subject>M, Met</subject><subject>Macromolecular Substances</subject><subject>Molecular Sequence Data</subject><subject>N, Asn</subject><subject>P, Pro</subject><subject>Phosphatidylinositol 3-kinase</subject><subject>Phosphatidylinositol 3-Kinases</subject><subject>Phosphotransferases (Alcohol Group Acceptor)</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - isolation & purification</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>PI 3-kinase, phosphatidylinositol 3-kinase</subject><subject>Polymerase Chain Reaction</subject><subject>R, Arg</subject><subject>Receptor, IGF Type 1</subject><subject>Receptor, IGF Type 1 - biosynthesis</subject><subject>Receptor, IGF Type 1 - isolation & purification</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Recombinant Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Serine Endopeptidases</subject><subject>Signal transduction</subject><subject>T, Thr</subject><subject>Two-hybrid system</subject><subject>X, any of the 20 aa</subject><subject>Y, Tyr</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EKkPhDUDyCtFFwI5_kmyQStVpRxoJFrC2HOeaMWScwXY6ytsTN6NZVl1Z95zvHln3IPSeks-UUPmFEMoLUTXsUyOuyCzRgr1AK1pXrGBc1i_R6oy8Rm9i_EPmuabNBbqoRN1wxlYobHyCoE1yg8eDxYda4Di2o3cpjz82mBV_ndcR8NGlHXY-jr3zWPsOb-7WBcUBDBzSEOKs6X6K0OF2wmN0_jdOO8DpOBS7qQ2uw3GKCfZv0Sur-wjvTu8l-rW-_XlzX2y_321urreFYbJhBbW0bC2DmlkmRUMlJ8RAWxmqRSfbTtcd55YLoq22goAm1cxTabkU0AJll-hqyd3pXh2C2-swqUE7dX-9VVkjJZWECvqQ2Y8LewjDvxFiUnsXDfS99jCMUVWV4GUp-AzyBTRhiDGAPSdTonItKt9c5ZurRqjHWhSb1z6c8sd2D9156dTD7K8X_-h6mJ6Vqda338psZL0Rj2oO-roEwXzZBwdBRePAG-jcXFRS3eCe_ul_j36uKA</recordid><startdate>19951002</startdate><enddate>19951002</enddate><creator>Lamothe, B.</creator><creator>Bucchini, D.</creator><creator>Jami, J.</creator><creator>Joshi, R.L.</creator><general>Elsevier B.V</general><general>Wiley</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1678-0529</orcidid></search><sort><creationdate>19951002</creationdate><title>Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system</title><author>Lamothe, B. ; Bucchini, D. ; Jami, J. ; Joshi, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-1f12bf3e83f365916400ceb7c1a5d6bda8d44f450afaf50ea072bf16f465ebe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>aa, amino acid</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - analysis</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>beta-Galactosidase</topic><topic>beta-Galactosidase - analysis</topic><topic>beta-Galactosidase - biosynthesis</topic><topic>beta-Galactosidase - metabolism</topic><topic>Blotting, Western</topic><topic>C, Cys</topic><topic>DNA Primers</topic><topic>Escherichia coli</topic><topic>H, His</topic><topic>IGF-1 receptor</topic><topic>IGF-1, insulin-like growth factor-1</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin receptor</topic><topic>Life Sciences</topic><topic>M, Met</topic><topic>Macromolecular Substances</topic><topic>Molecular Sequence Data</topic><topic>N, Asn</topic><topic>P, Pro</topic><topic>Phosphatidylinositol 3-kinase</topic><topic>Phosphatidylinositol 3-Kinases</topic><topic>Phosphotransferases (Alcohol Group Acceptor)</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - isolation & purification</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>PI 3-kinase, phosphatidylinositol 3-kinase</topic><topic>Polymerase Chain Reaction</topic><topic>R, Arg</topic><topic>Receptor, IGF Type 1</topic><topic>Receptor, IGF Type 1 - biosynthesis</topic><topic>Receptor, IGF Type 1 - isolation & purification</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Recombinant Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Serine Endopeptidases</topic><topic>Signal transduction</topic><topic>T, Thr</topic><topic>Two-hybrid system</topic><topic>X, any of the 20 aa</topic><topic>Y, Tyr</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamothe, B.</creatorcontrib><creatorcontrib>Bucchini, D.</creatorcontrib><creatorcontrib>Jami, J.</creatorcontrib><creatorcontrib>Joshi, R.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamothe, B.</au><au>Bucchini, D.</au><au>Jami, J.</au><au>Joshi, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>1995-10-02</date><risdate>1995</risdate><volume>373</volume><issue>1</issue><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Interaction of the p85 subunit of PI 3-kinase with the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) was investigated using the two-hybrid system by assessing for
his3 and
lacZ activation in
S. cerevisiae. The experiments were performed with the cytoplasmic β domain (wild type or mutated) of IR and IGF-1R and p85 or its subdomains (N + C-SH2, N-SH2, C-SH2, SH3 + N-SH2). The results of
his3 activation indicated that p85, N + C-SH2 and C-SH2 interact with both IRβ and IGF-1Rβ, whereas N-SH2 and SH3 + N-SH2 interact only with IRβ. Interaction of p85 and N + C-SH2 with IRβ(ΔC-43) or IGF-1Rβ(ΔC-43) in which the C-terminal 43 amino acids (including the YXXM motif) were deleted, persisted. The internal binding site thus revealed was not altered by further mutating Y
960/F for IR or Y
950/F for IGF-1R. Activation of
lacZ upon interaction of p85 with IRβ(ΔC-43) was 4-fold less as compared to IRβ. This activation with p85 and IGF-1Rβ was 4-fold less as compared to IRβ and was somewhat increased (2-fold) for IGE-1Rβ(ΔC-43). Thus, the C-terminal domain in IGF-1R appears to exert a negative control on binding of p85 thereby providing a possible regulatory mechanism for direct activation of the PI 3-kinase pathway.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>7589433</pmid><doi>10.1016/0014-5793(95)01011-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1678-0529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 1995-10, Vol.373 (1), p.51-55 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02160151v1 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
subjects | aa, amino acid Amino Acid Sequence Animals Bacterial Proteins Bacterial Proteins - analysis Bacterial Proteins - biosynthesis Bacterial Proteins - metabolism Base Sequence beta-Galactosidase beta-Galactosidase - analysis beta-Galactosidase - biosynthesis beta-Galactosidase - metabolism Blotting, Western C, Cys DNA Primers Escherichia coli H, His IGF-1 receptor IGF-1, insulin-like growth factor-1 Insulin Insulin - metabolism Insulin receptor Life Sciences M, Met Macromolecular Substances Molecular Sequence Data N, Asn P, Pro Phosphatidylinositol 3-kinase Phosphatidylinositol 3-Kinases Phosphotransferases (Alcohol Group Acceptor) Phosphotransferases (Alcohol Group Acceptor) - biosynthesis Phosphotransferases (Alcohol Group Acceptor) - isolation & purification Phosphotransferases (Alcohol Group Acceptor) - metabolism PI 3-kinase, phosphatidylinositol 3-kinase Polymerase Chain Reaction R, Arg Receptor, IGF Type 1 Receptor, IGF Type 1 - biosynthesis Receptor, IGF Type 1 - isolation & purification Receptor, IGF Type 1 - metabolism Recombinant Fusion Proteins Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - isolation & purification Recombinant Fusion Proteins - metabolism Recombinant Proteins Recombinant Proteins - biosynthesis Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Serine Endopeptidases Signal transduction T, Thr Two-hybrid system X, any of the 20 aa Y, Tyr |
title | Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20p85%20subunit%20of%20PI%203-kinase%20with%20insulin%20and%20IGF-1%20receptors%20analysed%20by%20using%20the%20two-hybrid%20system&rft.jtitle=FEBS%20letters&rft.au=Lamothe,%20B.&rft.date=1995-10-02&rft.volume=373&rft.issue=1&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/0014-5793(95)01011-3&rft_dat=%3Cproquest_hal_p%3E77542254%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77542254&rft_id=info:pmid/7589433&rft_els_id=0014579395010113&rfr_iscdi=true |