Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites

Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2011-07, Vol.406 (14), p.2908-2913
Hauptverfasser: Couderc, H., Saiter, A., Grenet, J., Saiter, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2913
container_issue 14
container_start_page 2908
container_title Physica. B, Condensed matter
container_volume 406
creator Couderc, H.
Saiter, A.
Grenet, J.
Saiter, J.M.
description Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ Cp( T g ), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens [34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.
doi_str_mv 10.1016/j.physb.2011.04.064
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02156353v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452611004510</els_id><sourcerecordid>889388353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</originalsourceid><addsrcrecordid>eNp9kb1uFDEURi0EEkvgCWimQYhiBv-OZwqKKAoJ0iIoQm3d9dzJeuWxF9sbaTvegTfkSfCyUUrcWPI933elY0LeMtoxyvqPu26_PeZNxyljHZUd7eUzsmKDFi1nQj0nKzpy1krF-5fkVc47Wg_TbEXMTYLJYShNnJslerQHD6mZjgEWZ3MDpSlbbO495NyUBCG74mI40d-v7-7__Pr9NYayxOS8j8EVbAKEaOOyj5XE_Jq8mMFnfPN4X5Afn6_vrm7b9bebL1eX69YKPpZWCTbCSDcoxKz1hIopPYKWQul-xLlOkc1SC9homIWSo9KM64Gj4roXUy8uyIdz7xa82Se3QDqaCM7cXq7N6Y1ypnqhxAOr7Pszu0_x5wFzMYvLFr2HgPGQzTCMYhgqW0lxJm2KOSecn6oZNSfzZmf-mTcn84ZKU83X1LvHfsgW_FytWZefolwKyiUdKvfpzGEV8-AwmWzrV1icXEJbzBTdf_f8BU7Umsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889388353</pqid></control><display><type>article</type><title>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Couderc, H. ; Saiter, A. ; Grenet, J. ; Saiter, J.M.</creator><creatorcontrib>Couderc, H. ; Saiter, A. ; Grenet, J. ; Saiter, J.M.</creatorcontrib><description>Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ Cp( T g ), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens [34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2011.04.064</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Condensed Matter ; Cooperative rearranging region ; Density ; Differential scanning calorimetry ; Evolution ; Exact sciences and technology ; Fragility ; Materials Science ; Molecular dynamics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Organic polymers ; Physicochemistry of polymers ; Physics ; Properties and characterization ; Structure, morphology and analysis ; Thermal analysis</subject><ispartof>Physica. B, Condensed matter, 2011-07, Vol.406 (14), p.2908-2913</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</citedby><cites>FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</cites><orcidid>0000-0001-9275-6865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2011.04.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24302408$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02156353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couderc, H.</creatorcontrib><creatorcontrib>Saiter, A.</creatorcontrib><creatorcontrib>Grenet, J.</creatorcontrib><creatorcontrib>Saiter, J.M.</creatorcontrib><title>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</title><title>Physica. B, Condensed matter</title><description>Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ Cp( T g ), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens [34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.</description><subject>Applied sciences</subject><subject>Condensed Matter</subject><subject>Cooperative rearranging region</subject><subject>Density</subject><subject>Differential scanning calorimetry</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fragility</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Properties and characterization</subject><subject>Structure, morphology and analysis</subject><subject>Thermal analysis</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kb1uFDEURi0EEkvgCWimQYhiBv-OZwqKKAoJ0iIoQm3d9dzJeuWxF9sbaTvegTfkSfCyUUrcWPI933elY0LeMtoxyvqPu26_PeZNxyljHZUd7eUzsmKDFi1nQj0nKzpy1krF-5fkVc47Wg_TbEXMTYLJYShNnJslerQHD6mZjgEWZ3MDpSlbbO495NyUBCG74mI40d-v7-7__Pr9NYayxOS8j8EVbAKEaOOyj5XE_Jq8mMFnfPN4X5Afn6_vrm7b9bebL1eX69YKPpZWCTbCSDcoxKz1hIopPYKWQul-xLlOkc1SC9homIWSo9KM64Gj4roXUy8uyIdz7xa82Se3QDqaCM7cXq7N6Y1ypnqhxAOr7Pszu0_x5wFzMYvLFr2HgPGQzTCMYhgqW0lxJm2KOSecn6oZNSfzZmf-mTcn84ZKU83X1LvHfsgW_FytWZefolwKyiUdKvfpzGEV8-AwmWzrV1icXEJbzBTdf_f8BU7Umsg</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Couderc, H.</creator><creator>Saiter, A.</creator><creator>Grenet, J.</creator><creator>Saiter, J.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9275-6865</orcidid></search><sort><creationdate>20110715</creationdate><title>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</title><author>Couderc, H. ; Saiter, A. ; Grenet, J. ; Saiter, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Condensed Matter</topic><topic>Cooperative rearranging region</topic><topic>Density</topic><topic>Differential scanning calorimetry</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fragility</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Properties and characterization</topic><topic>Structure, morphology and analysis</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couderc, H.</creatorcontrib><creatorcontrib>Saiter, A.</creatorcontrib><creatorcontrib>Grenet, J.</creatorcontrib><creatorcontrib>Saiter, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couderc, H.</au><au>Saiter, A.</au><au>Grenet, J.</au><au>Saiter, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>406</volume><issue>14</issue><spage>2908</spage><epage>2913</epage><pages>2908-2913</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ Cp( T g ), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens [34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2011.04.064</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9275-6865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2011-07, Vol.406 (14), p.2908-2913
issn 0921-4526
1873-2135
language eng
recordid cdi_hal_primary_oai_HAL_hal_02156353v1
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Condensed Matter
Cooperative rearranging region
Density
Differential scanning calorimetry
Evolution
Exact sciences and technology
Fragility
Materials Science
Molecular dynamics
Nanocomposites
Nanomaterials
Nanostructure
Organic polymers
Physicochemistry of polymers
Physics
Properties and characterization
Structure, morphology and analysis
Thermal analysis
title Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20of%20molecular%20dynamics%20at%20the%20glass%20transition%20of%20PETg%E2%80%93Montmorillonite%20nanocomposites&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Couderc,%20H.&rft.date=2011-07-15&rft.volume=406&rft.issue=14&rft.spage=2908&rft.epage=2913&rft.pages=2908-2913&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2011.04.064&rft_dat=%3Cproquest_hal_p%3E889388353%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889388353&rft_id=info:pmid/&rft_els_id=S0921452611004510&rfr_iscdi=true