Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites
Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2011-07, Vol.406 (14), p.2908-2913 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2913 |
---|---|
container_issue | 14 |
container_start_page | 2908 |
container_title | Physica. B, Condensed matter |
container_volume | 406 |
creator | Couderc, H. Saiter, A. Grenet, J. Saiter, J.M. |
description | Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ
Cp(
T
g
), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens
[34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one. |
doi_str_mv | 10.1016/j.physb.2011.04.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02156353v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452611004510</els_id><sourcerecordid>889388353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</originalsourceid><addsrcrecordid>eNp9kb1uFDEURi0EEkvgCWimQYhiBv-OZwqKKAoJ0iIoQm3d9dzJeuWxF9sbaTvegTfkSfCyUUrcWPI933elY0LeMtoxyvqPu26_PeZNxyljHZUd7eUzsmKDFi1nQj0nKzpy1krF-5fkVc47Wg_TbEXMTYLJYShNnJslerQHD6mZjgEWZ3MDpSlbbO495NyUBCG74mI40d-v7-7__Pr9NYayxOS8j8EVbAKEaOOyj5XE_Jq8mMFnfPN4X5Afn6_vrm7b9bebL1eX69YKPpZWCTbCSDcoxKz1hIopPYKWQul-xLlOkc1SC9homIWSo9KM64Gj4roXUy8uyIdz7xa82Se3QDqaCM7cXq7N6Y1ypnqhxAOr7Pszu0_x5wFzMYvLFr2HgPGQzTCMYhgqW0lxJm2KOSecn6oZNSfzZmf-mTcn84ZKU83X1LvHfsgW_FytWZefolwKyiUdKvfpzGEV8-AwmWzrV1icXEJbzBTdf_f8BU7Umsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889388353</pqid></control><display><type>article</type><title>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Couderc, H. ; Saiter, A. ; Grenet, J. ; Saiter, J.M.</creator><creatorcontrib>Couderc, H. ; Saiter, A. ; Grenet, J. ; Saiter, J.M.</creatorcontrib><description>Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ
Cp(
T
g
), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens
[34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2011.04.064</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Condensed Matter ; Cooperative rearranging region ; Density ; Differential scanning calorimetry ; Evolution ; Exact sciences and technology ; Fragility ; Materials Science ; Molecular dynamics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Organic polymers ; Physicochemistry of polymers ; Physics ; Properties and characterization ; Structure, morphology and analysis ; Thermal analysis</subject><ispartof>Physica. B, Condensed matter, 2011-07, Vol.406 (14), p.2908-2913</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</citedby><cites>FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</cites><orcidid>0000-0001-9275-6865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2011.04.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24302408$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02156353$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couderc, H.</creatorcontrib><creatorcontrib>Saiter, A.</creatorcontrib><creatorcontrib>Grenet, J.</creatorcontrib><creatorcontrib>Saiter, J.M.</creatorcontrib><title>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</title><title>Physica. B, Condensed matter</title><description>Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ
Cp(
T
g
), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens
[34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.</description><subject>Applied sciences</subject><subject>Condensed Matter</subject><subject>Cooperative rearranging region</subject><subject>Density</subject><subject>Differential scanning calorimetry</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fragility</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Properties and characterization</subject><subject>Structure, morphology and analysis</subject><subject>Thermal analysis</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kb1uFDEURi0EEkvgCWimQYhiBv-OZwqKKAoJ0iIoQm3d9dzJeuWxF9sbaTvegTfkSfCyUUrcWPI933elY0LeMtoxyvqPu26_PeZNxyljHZUd7eUzsmKDFi1nQj0nKzpy1krF-5fkVc47Wg_TbEXMTYLJYShNnJslerQHD6mZjgEWZ3MDpSlbbO495NyUBCG74mI40d-v7-7__Pr9NYayxOS8j8EVbAKEaOOyj5XE_Jq8mMFnfPN4X5Afn6_vrm7b9bebL1eX69YKPpZWCTbCSDcoxKz1hIopPYKWQul-xLlOkc1SC9homIWSo9KM64Gj4roXUy8uyIdz7xa82Se3QDqaCM7cXq7N6Y1ypnqhxAOr7Pszu0_x5wFzMYvLFr2HgPGQzTCMYhgqW0lxJm2KOSecn6oZNSfzZmf-mTcn84ZKU83X1LvHfsgW_FytWZefolwKyiUdKvfpzGEV8-AwmWzrV1icXEJbzBTdf_f8BU7Umsg</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Couderc, H.</creator><creator>Saiter, A.</creator><creator>Grenet, J.</creator><creator>Saiter, J.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9275-6865</orcidid></search><sort><creationdate>20110715</creationdate><title>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</title><author>Couderc, H. ; Saiter, A. ; Grenet, J. ; Saiter, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-5319a90be33f77de51579a7435769ef319e1f473ab7af35495712782e52763d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Condensed Matter</topic><topic>Cooperative rearranging region</topic><topic>Density</topic><topic>Differential scanning calorimetry</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fragility</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Properties and characterization</topic><topic>Structure, morphology and analysis</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couderc, H.</creatorcontrib><creatorcontrib>Saiter, A.</creatorcontrib><creatorcontrib>Grenet, J.</creatorcontrib><creatorcontrib>Saiter, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couderc, H.</au><au>Saiter, A.</au><au>Grenet, J.</au><au>Saiter, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>406</volume><issue>14</issue><spage>2908</spage><epage>2913</epage><pages>2908-2913</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ
Cp(
T
g
), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens
[34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2011.04.064</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9275-6865</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2011-07, Vol.406 (14), p.2908-2913 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02156353v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Condensed Matter Cooperative rearranging region Density Differential scanning calorimetry Evolution Exact sciences and technology Fragility Materials Science Molecular dynamics Nanocomposites Nanomaterials Nanostructure Organic polymers Physicochemistry of polymers Physics Properties and characterization Structure, morphology and analysis Thermal analysis |
title | Gradient of molecular dynamics at the glass transition of PETg–Montmorillonite nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20of%20molecular%20dynamics%20at%20the%20glass%20transition%20of%20PETg%E2%80%93Montmorillonite%20nanocomposites&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Couderc,%20H.&rft.date=2011-07-15&rft.volume=406&rft.issue=14&rft.spage=2908&rft.epage=2913&rft.pages=2908-2913&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2011.04.064&rft_dat=%3Cproquest_hal_p%3E889388353%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889388353&rft_id=info:pmid/&rft_els_id=S0921452611004510&rfr_iscdi=true |