Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic acid)

Summary The molecular mobility of an organic glass (PLA with 4.3% of D‐lactic acid content) was investigated by calculating the size of the Cooperative Rearranging Regions (CRR) at its glass transition. The samples were exposed to different external constraints – namely a large deformation by mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular symposia. 2014-07, Vol.341 (1), p.26-33
Hauptverfasser: Bouthegourd, Emilie, Esposito, Antonella, Saiter, Allisson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 26
container_title Macromolecular symposia.
container_volume 341
creator Bouthegourd, Emilie
Esposito, Antonella
Saiter, Allisson
description Summary The molecular mobility of an organic glass (PLA with 4.3% of D‐lactic acid content) was investigated by calculating the size of the Cooperative Rearranging Regions (CRR) at its glass transition. The samples were exposed to different external constraints – namely a large deformation by mechanical compression at T 
doi_str_mv 10.1002/masy.201300154
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02155238v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3613846451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4594-7c47c52491d760a8a1ded7a14d7d1a666c357a468f62552acbcb9036028e940c3</originalsourceid><addsrcrecordid>eNqFkcFv0zAUhyMEEmPsyjkSl-2Q8mwndn2sqrFOatgkYIiT9eo4qocbFzsB8t_PUVCFduHkJ7_ve_LzL8veEVgQAPrhgHFcUCAMgFTli-yMVJQUTAK8TDVQWhDG4XX2JsZHAJBSkLNsf922Rve5b_Pa6D12VqPL1_5wDCZG67scuybfjE3wscfe6vx-agzB5KnX701ee2f04DCkamed7cdp2L1346VDPRmobXP1NnvVoovm4u95nn39eP1lvSm2dze369W20GUly0LoUuiKlpI0ggMukTSmEUjKRjQEOeeaVQJLvmw5rSqKeqd3EtJedGlkCZqdZ1fz3D06dQz2gGFUHq3arLZqugNKksiWv0hiL2f2GPzPwcReHWzUxjnsjB-iSqAUlJZiQt8_Qx_9ELq0iSKcQ8VAUpqoxUzp9F0xmPb0AgJqCklNIalTSEmQs_DbOjP-h1b16vP3f91idm3szZ-Ti-GH4oKJSn37dKM4IbSu2YOS7AmDqaMI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660530922</pqid></control><display><type>article</type><title>Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic acid)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bouthegourd, Emilie ; Esposito, Antonella ; Saiter, Allisson</creator><creatorcontrib>Bouthegourd, Emilie ; Esposito, Antonella ; Saiter, Allisson</creatorcontrib><description>Summary The molecular mobility of an organic glass (PLA with 4.3% of D‐lactic acid content) was investigated by calculating the size of the Cooperative Rearranging Regions (CRR) at its glass transition. The samples were exposed to different external constraints – namely a large deformation by mechanical compression at T &lt; Tg (prior to measurement) or different hydrostatic pressures (during the measurement). The measurements were performed by Differential Scanning Calorimetry (DSC) techniques: standard, temperature modulated (TM‐DSC) and high pressure (HP‐DSC). It was shown that mechanical deformations above the elastic limit increase the CRR size and shift the Tg value to higher temperatures, but have no effect on the value of ΔCp(Tg). On the other hand, increasing the hydrostatic pressure during the measurement (1 to 100 bar) decreases the CRR size, slightly influences Tg and does not change the value of ΔCp(Tg).</description><identifier>ISSN: 1022-1360</identifier><identifier>EISSN: 1521-3900</identifier><identifier>DOI: 10.1002/masy.201300154</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Compressing ; compression ; Condensed Matter ; CRR ; Deformation ; Differential scanning calorimetry ; Elastic limit ; Engineering Sciences ; Glass transition ; Hydrostatic pressure ; Materials ; Materials Science ; Mathematical analysis ; molecular mobility ; Physics ; PLA ; pressure ; Soft Condensed Matter</subject><ispartof>Macromolecular symposia., 2014-07, Vol.341 (1), p.26-33</ispartof><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4594-7c47c52491d760a8a1ded7a14d7d1a666c357a468f62552acbcb9036028e940c3</citedby><cites>FETCH-LOGICAL-c4594-7c47c52491d760a8a1ded7a14d7d1a666c357a468f62552acbcb9036028e940c3</cites><orcidid>0000-0001-9275-6865 ; 0000-0003-0507-1417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmasy.201300154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmasy.201300154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02155238$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouthegourd, Emilie</creatorcontrib><creatorcontrib>Esposito, Antonella</creatorcontrib><creatorcontrib>Saiter, Allisson</creatorcontrib><title>Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic acid)</title><title>Macromolecular symposia.</title><addtitle>Macromol. Symp</addtitle><description>Summary The molecular mobility of an organic glass (PLA with 4.3% of D‐lactic acid content) was investigated by calculating the size of the Cooperative Rearranging Regions (CRR) at its glass transition. The samples were exposed to different external constraints – namely a large deformation by mechanical compression at T &lt; Tg (prior to measurement) or different hydrostatic pressures (during the measurement). The measurements were performed by Differential Scanning Calorimetry (DSC) techniques: standard, temperature modulated (TM‐DSC) and high pressure (HP‐DSC). It was shown that mechanical deformations above the elastic limit increase the CRR size and shift the Tg value to higher temperatures, but have no effect on the value of ΔCp(Tg). On the other hand, increasing the hydrostatic pressure during the measurement (1 to 100 bar) decreases the CRR size, slightly influences Tg and does not change the value of ΔCp(Tg).</description><subject>Compressing</subject><subject>compression</subject><subject>Condensed Matter</subject><subject>CRR</subject><subject>Deformation</subject><subject>Differential scanning calorimetry</subject><subject>Elastic limit</subject><subject>Engineering Sciences</subject><subject>Glass transition</subject><subject>Hydrostatic pressure</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>molecular mobility</subject><subject>Physics</subject><subject>PLA</subject><subject>pressure</subject><subject>Soft Condensed Matter</subject><issn>1022-1360</issn><issn>1521-3900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFv0zAUhyMEEmPsyjkSl-2Q8mwndn2sqrFOatgkYIiT9eo4qocbFzsB8t_PUVCFduHkJ7_ve_LzL8veEVgQAPrhgHFcUCAMgFTli-yMVJQUTAK8TDVQWhDG4XX2JsZHAJBSkLNsf922Rve5b_Pa6D12VqPL1_5wDCZG67scuybfjE3wscfe6vx-agzB5KnX701ee2f04DCkamed7cdp2L1346VDPRmobXP1NnvVoovm4u95nn39eP1lvSm2dze369W20GUly0LoUuiKlpI0ggMukTSmEUjKRjQEOeeaVQJLvmw5rSqKeqd3EtJedGlkCZqdZ1fz3D06dQz2gGFUHq3arLZqugNKksiWv0hiL2f2GPzPwcReHWzUxjnsjB-iSqAUlJZiQt8_Qx_9ELq0iSKcQ8VAUpqoxUzp9F0xmPb0AgJqCklNIalTSEmQs_DbOjP-h1b16vP3f91idm3szZ-Ti-GH4oKJSn37dKM4IbSu2YOS7AmDqaMI</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Bouthegourd, Emilie</creator><creator>Esposito, Antonella</creator><creator>Saiter, Allisson</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9275-6865</orcidid><orcidid>https://orcid.org/0000-0003-0507-1417</orcidid></search><sort><creationdate>201407</creationdate><title>Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic acid)</title><author>Bouthegourd, Emilie ; Esposito, Antonella ; Saiter, Allisson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4594-7c47c52491d760a8a1ded7a14d7d1a666c357a468f62552acbcb9036028e940c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Compressing</topic><topic>compression</topic><topic>Condensed Matter</topic><topic>CRR</topic><topic>Deformation</topic><topic>Differential scanning calorimetry</topic><topic>Elastic limit</topic><topic>Engineering Sciences</topic><topic>Glass transition</topic><topic>Hydrostatic pressure</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>molecular mobility</topic><topic>Physics</topic><topic>PLA</topic><topic>pressure</topic><topic>Soft Condensed Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouthegourd, Emilie</creatorcontrib><creatorcontrib>Esposito, Antonella</creatorcontrib><creatorcontrib>Saiter, Allisson</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Macromolecular symposia.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouthegourd, Emilie</au><au>Esposito, Antonella</au><au>Saiter, Allisson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic acid)</atitle><jtitle>Macromolecular symposia.</jtitle><addtitle>Macromol. Symp</addtitle><date>2014-07</date><risdate>2014</risdate><volume>341</volume><issue>1</issue><spage>26</spage><epage>33</epage><pages>26-33</pages><issn>1022-1360</issn><eissn>1521-3900</eissn><abstract>Summary The molecular mobility of an organic glass (PLA with 4.3% of D‐lactic acid content) was investigated by calculating the size of the Cooperative Rearranging Regions (CRR) at its glass transition. The samples were exposed to different external constraints – namely a large deformation by mechanical compression at T &lt; Tg (prior to measurement) or different hydrostatic pressures (during the measurement). The measurements were performed by Differential Scanning Calorimetry (DSC) techniques: standard, temperature modulated (TM‐DSC) and high pressure (HP‐DSC). It was shown that mechanical deformations above the elastic limit increase the CRR size and shift the Tg value to higher temperatures, but have no effect on the value of ΔCp(Tg). On the other hand, increasing the hydrostatic pressure during the measurement (1 to 100 bar) decreases the CRR size, slightly influences Tg and does not change the value of ΔCp(Tg).</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/masy.201300154</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9275-6865</orcidid><orcidid>https://orcid.org/0000-0003-0507-1417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1360
ispartof Macromolecular symposia., 2014-07, Vol.341 (1), p.26-33
issn 1022-1360
1521-3900
language eng
recordid cdi_hal_primary_oai_HAL_hal_02155238v1
source Wiley Online Library Journals Frontfile Complete
subjects Compressing
compression
Condensed Matter
CRR
Deformation
Differential scanning calorimetry
Elastic limit
Engineering Sciences
Glass transition
Hydrostatic pressure
Materials
Materials Science
Mathematical analysis
molecular mobility
Physics
PLA
pressure
Soft Condensed Matter
title Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic acid)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Mechanical%20Compression%20and%20Hydrostatic%20Pressure%20on%20the%20Molecular%20Mobility%20of%20Poly(lactic%20acid)&rft.jtitle=Macromolecular%20symposia.&rft.au=Bouthegourd,%20Emilie&rft.date=2014-07&rft.volume=341&rft.issue=1&rft.spage=26&rft.epage=33&rft.pages=26-33&rft.issn=1022-1360&rft.eissn=1521-3900&rft_id=info:doi/10.1002/masy.201300154&rft_dat=%3Cproquest_hal_p%3E3613846451%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660530922&rft_id=info:pmid/&rfr_iscdi=true