Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle

This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-01, Vol.166, p.519-529
Hauptverfasser: Ndiogou, Baye A., Thiam, Ababacar, Mbow, Cheikh, Stouffs, Pascal, Azilinon, Dorothé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue
container_start_page 519
container_title Energy (Oxford)
container_volume 166
creator Ndiogou, Baye A.
Thiam, Ababacar
Mbow, Cheikh
Stouffs, Pascal
Azilinon, Dorothé
description This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver. •Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.
doi_str_mv 10.1016/j.energy.2018.09.176
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02153248v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218319480</els_id><sourcerecordid>2172647177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1EJZa234CDJU4cEmzH8Z8LUqkKRVrBhZ6tqT0Br7LxYmdXCp8eR0EcOc3o6b2nmR8hbzhrOePq_aHFCfOPpRWMm5bZlmv1guy40V2jtOlfkh3rFGt6KcUr8rqUA2OsN9buyPPX8xFz9DBSmGBcSix1CTSd5niMv2GOaaJpqBqNU4gZ_TwuNOYMIcKMgZY0QqZVx3jBTIeUKdCPGZa5Bv3iR7whVwOMBW__zmvy9Onh-_1js__2-cv93b7xnTJzIzvBZI_rC1YGsD33MDxbCRaYUoPo7dAHhSbYqsgetDEaQyc85zowobtr8m7r_QmjO-V4hLy4BNE93u3dqjHB-05Ic-HV-3bznnL6dcYyu0M65wqgOMG1UFJzvTbKzeVzKiXj8K-WM7eSdwe3kXfr2Y5ZV8nX2IcthvXbS8Tsio84edz4uZDi_wv-AMHqjjE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172647177</pqid></control><display><type>article</type><title>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</title><source>Elsevier ScienceDirect Journals</source><creator>Ndiogou, Baye A. ; Thiam, Ababacar ; Mbow, Cheikh ; Stouffs, Pascal ; Azilinon, Dorothé</creator><creatorcontrib>Ndiogou, Baye A. ; Thiam, Ababacar ; Mbow, Cheikh ; Stouffs, Pascal ; Azilinon, Dorothé</creatorcontrib><description>This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver. •Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.09.176</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absorbers ; Air solar receiver ; Boundary conditions ; Brayton cycle ; CFD modeling ; Chemical and Process Engineering ; Computer simulation ; CSP ; Engineering Sciences ; Flow simulation ; Heat exchange ; Heat transfer ; Iterative methods ; Kriging interpolation ; Mathematical models ; Matrix methods ; MOGA ; Net-radiation method ; Numerical analysis ; Optimization ; Parameters ; Photovoltaic cells ; Porosity ; Porous media ; Radiation ; Response surface method optimization ; Response surface methodology ; Solar energy ; Temperature distribution ; Temperature effects ; Thermodynamic efficiency</subject><ispartof>Energy (Oxford), 2019-01, Vol.166, p.519-529</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</citedby><cites>FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</cites><orcidid>0000-0003-3920-0205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.09.176$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://univ-pau.hal.science/hal-02153248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ndiogou, Baye A.</creatorcontrib><creatorcontrib>Thiam, Ababacar</creatorcontrib><creatorcontrib>Mbow, Cheikh</creatorcontrib><creatorcontrib>Stouffs, Pascal</creatorcontrib><creatorcontrib>Azilinon, Dorothé</creatorcontrib><title>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</title><title>Energy (Oxford)</title><description>This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver. •Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.</description><subject>Absorbers</subject><subject>Air solar receiver</subject><subject>Boundary conditions</subject><subject>Brayton cycle</subject><subject>CFD modeling</subject><subject>Chemical and Process Engineering</subject><subject>Computer simulation</subject><subject>CSP</subject><subject>Engineering Sciences</subject><subject>Flow simulation</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Iterative methods</subject><subject>Kriging interpolation</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>MOGA</subject><subject>Net-radiation method</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Radiation</subject><subject>Response surface method optimization</subject><subject>Response surface methodology</subject><subject>Solar energy</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Thermodynamic efficiency</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1EJZa234CDJU4cEmzH8Z8LUqkKRVrBhZ6tqT0Br7LxYmdXCp8eR0EcOc3o6b2nmR8hbzhrOePq_aHFCfOPpRWMm5bZlmv1guy40V2jtOlfkh3rFGt6KcUr8rqUA2OsN9buyPPX8xFz9DBSmGBcSix1CTSd5niMv2GOaaJpqBqNU4gZ_TwuNOYMIcKMgZY0QqZVx3jBTIeUKdCPGZa5Bv3iR7whVwOMBW__zmvy9Onh-_1js__2-cv93b7xnTJzIzvBZI_rC1YGsD33MDxbCRaYUoPo7dAHhSbYqsgetDEaQyc85zowobtr8m7r_QmjO-V4hLy4BNE93u3dqjHB-05Ic-HV-3bznnL6dcYyu0M65wqgOMG1UFJzvTbKzeVzKiXj8K-WM7eSdwe3kXfr2Y5ZV8nX2IcthvXbS8Tsio84edz4uZDi_wv-AMHqjjE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ndiogou, Baye A.</creator><creator>Thiam, Ababacar</creator><creator>Mbow, Cheikh</creator><creator>Stouffs, Pascal</creator><creator>Azilinon, Dorothé</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3920-0205</orcidid></search><sort><creationdate>20190101</creationdate><title>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</title><author>Ndiogou, Baye A. ; Thiam, Ababacar ; Mbow, Cheikh ; Stouffs, Pascal ; Azilinon, Dorothé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers</topic><topic>Air solar receiver</topic><topic>Boundary conditions</topic><topic>Brayton cycle</topic><topic>CFD modeling</topic><topic>Chemical and Process Engineering</topic><topic>Computer simulation</topic><topic>CSP</topic><topic>Engineering Sciences</topic><topic>Flow simulation</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Iterative methods</topic><topic>Kriging interpolation</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>MOGA</topic><topic>Net-radiation method</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Radiation</topic><topic>Response surface method optimization</topic><topic>Response surface methodology</topic><topic>Solar energy</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Thermodynamic efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndiogou, Baye A.</creatorcontrib><creatorcontrib>Thiam, Ababacar</creatorcontrib><creatorcontrib>Mbow, Cheikh</creatorcontrib><creatorcontrib>Stouffs, Pascal</creatorcontrib><creatorcontrib>Azilinon, Dorothé</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndiogou, Baye A.</au><au>Thiam, Ababacar</au><au>Mbow, Cheikh</au><au>Stouffs, Pascal</au><au>Azilinon, Dorothé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>166</volume><spage>519</spage><epage>529</epage><pages>519-529</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver. •Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.09.176</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3920-0205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-01, Vol.166, p.519-529
issn 0360-5442
1873-6785
language eng
recordid cdi_hal_primary_oai_HAL_hal_02153248v1
source Elsevier ScienceDirect Journals
subjects Absorbers
Air solar receiver
Boundary conditions
Brayton cycle
CFD modeling
Chemical and Process Engineering
Computer simulation
CSP
Engineering Sciences
Flow simulation
Heat exchange
Heat transfer
Iterative methods
Kriging interpolation
Mathematical models
Matrix methods
MOGA
Net-radiation method
Numerical analysis
Optimization
Parameters
Photovoltaic cells
Porosity
Porous media
Radiation
Response surface method optimization
Response surface methodology
Solar energy
Temperature distribution
Temperature effects
Thermodynamic efficiency
title Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20and%20optimization%20of%20an%20indirectly%20irradiated%20solar%20receiver%20for%20a%20Brayton%20cycle&rft.jtitle=Energy%20(Oxford)&rft.au=Ndiogou,%20Baye%20A.&rft.date=2019-01-01&rft.volume=166&rft.spage=519&rft.epage=529&rft.pages=519-529&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.09.176&rft_dat=%3Cproquest_hal_p%3E2172647177%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172647177&rft_id=info:pmid/&rft_els_id=S0360544218319480&rfr_iscdi=true