Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle
This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-01, Vol.166, p.519-529 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | |
container_start_page | 519 |
container_title | Energy (Oxford) |
container_volume | 166 |
creator | Ndiogou, Baye A. Thiam, Ababacar Mbow, Cheikh Stouffs, Pascal Azilinon, Dorothé |
description | This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver.
•Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies. |
doi_str_mv | 10.1016/j.energy.2018.09.176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02153248v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218319480</els_id><sourcerecordid>2172647177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1EJZa234CDJU4cEmzH8Z8LUqkKRVrBhZ6tqT0Br7LxYmdXCp8eR0EcOc3o6b2nmR8hbzhrOePq_aHFCfOPpRWMm5bZlmv1guy40V2jtOlfkh3rFGt6KcUr8rqUA2OsN9buyPPX8xFz9DBSmGBcSix1CTSd5niMv2GOaaJpqBqNU4gZ_TwuNOYMIcKMgZY0QqZVx3jBTIeUKdCPGZa5Bv3iR7whVwOMBW__zmvy9Onh-_1js__2-cv93b7xnTJzIzvBZI_rC1YGsD33MDxbCRaYUoPo7dAHhSbYqsgetDEaQyc85zowobtr8m7r_QmjO-V4hLy4BNE93u3dqjHB-05Ic-HV-3bznnL6dcYyu0M65wqgOMG1UFJzvTbKzeVzKiXj8K-WM7eSdwe3kXfr2Y5ZV8nX2IcthvXbS8Tsio84edz4uZDi_wv-AMHqjjE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172647177</pqid></control><display><type>article</type><title>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</title><source>Elsevier ScienceDirect Journals</source><creator>Ndiogou, Baye A. ; Thiam, Ababacar ; Mbow, Cheikh ; Stouffs, Pascal ; Azilinon, Dorothé</creator><creatorcontrib>Ndiogou, Baye A. ; Thiam, Ababacar ; Mbow, Cheikh ; Stouffs, Pascal ; Azilinon, Dorothé</creatorcontrib><description>This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver.
•Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.09.176</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absorbers ; Air solar receiver ; Boundary conditions ; Brayton cycle ; CFD modeling ; Chemical and Process Engineering ; Computer simulation ; CSP ; Engineering Sciences ; Flow simulation ; Heat exchange ; Heat transfer ; Iterative methods ; Kriging interpolation ; Mathematical models ; Matrix methods ; MOGA ; Net-radiation method ; Numerical analysis ; Optimization ; Parameters ; Photovoltaic cells ; Porosity ; Porous media ; Radiation ; Response surface method optimization ; Response surface methodology ; Solar energy ; Temperature distribution ; Temperature effects ; Thermodynamic efficiency</subject><ispartof>Energy (Oxford), 2019-01, Vol.166, p.519-529</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</citedby><cites>FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</cites><orcidid>0000-0003-3920-0205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.09.176$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://univ-pau.hal.science/hal-02153248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ndiogou, Baye A.</creatorcontrib><creatorcontrib>Thiam, Ababacar</creatorcontrib><creatorcontrib>Mbow, Cheikh</creatorcontrib><creatorcontrib>Stouffs, Pascal</creatorcontrib><creatorcontrib>Azilinon, Dorothé</creatorcontrib><title>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</title><title>Energy (Oxford)</title><description>This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver.
•Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.</description><subject>Absorbers</subject><subject>Air solar receiver</subject><subject>Boundary conditions</subject><subject>Brayton cycle</subject><subject>CFD modeling</subject><subject>Chemical and Process Engineering</subject><subject>Computer simulation</subject><subject>CSP</subject><subject>Engineering Sciences</subject><subject>Flow simulation</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Iterative methods</subject><subject>Kriging interpolation</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>MOGA</subject><subject>Net-radiation method</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Radiation</subject><subject>Response surface method optimization</subject><subject>Response surface methodology</subject><subject>Solar energy</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Thermodynamic efficiency</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1EJZa234CDJU4cEmzH8Z8LUqkKRVrBhZ6tqT0Br7LxYmdXCp8eR0EcOc3o6b2nmR8hbzhrOePq_aHFCfOPpRWMm5bZlmv1guy40V2jtOlfkh3rFGt6KcUr8rqUA2OsN9buyPPX8xFz9DBSmGBcSix1CTSd5niMv2GOaaJpqBqNU4gZ_TwuNOYMIcKMgZY0QqZVx3jBTIeUKdCPGZa5Bv3iR7whVwOMBW__zmvy9Onh-_1js__2-cv93b7xnTJzIzvBZI_rC1YGsD33MDxbCRaYUoPo7dAHhSbYqsgetDEaQyc85zowobtr8m7r_QmjO-V4hLy4BNE93u3dqjHB-05Ic-HV-3bznnL6dcYyu0M65wqgOMG1UFJzvTbKzeVzKiXj8K-WM7eSdwe3kXfr2Y5ZV8nX2IcthvXbS8Tsio84edz4uZDi_wv-AMHqjjE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ndiogou, Baye A.</creator><creator>Thiam, Ababacar</creator><creator>Mbow, Cheikh</creator><creator>Stouffs, Pascal</creator><creator>Azilinon, Dorothé</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3920-0205</orcidid></search><sort><creationdate>20190101</creationdate><title>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</title><author>Ndiogou, Baye A. ; Thiam, Ababacar ; Mbow, Cheikh ; Stouffs, Pascal ; Azilinon, Dorothé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-432045e201894da951cafb94a9a066f259f5d6e8d9a9a45a7887ed32c117d0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers</topic><topic>Air solar receiver</topic><topic>Boundary conditions</topic><topic>Brayton cycle</topic><topic>CFD modeling</topic><topic>Chemical and Process Engineering</topic><topic>Computer simulation</topic><topic>CSP</topic><topic>Engineering Sciences</topic><topic>Flow simulation</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Iterative methods</topic><topic>Kriging interpolation</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>MOGA</topic><topic>Net-radiation method</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Radiation</topic><topic>Response surface method optimization</topic><topic>Response surface methodology</topic><topic>Solar energy</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Thermodynamic efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndiogou, Baye A.</creatorcontrib><creatorcontrib>Thiam, Ababacar</creatorcontrib><creatorcontrib>Mbow, Cheikh</creatorcontrib><creatorcontrib>Stouffs, Pascal</creatorcontrib><creatorcontrib>Azilinon, Dorothé</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndiogou, Baye A.</au><au>Thiam, Ababacar</au><au>Mbow, Cheikh</au><au>Stouffs, Pascal</au><au>Azilinon, Dorothé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>166</volume><spage>519</spage><epage>529</epage><pages>519-529</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This work presents the modeling and optimization of an indirectly irradiated solar receiver. A numerical model of the cavity-absorber block is put forward with the coupling of the net-radiation method using the infinitesimal areas and a CFD code. An iterative method with a relaxation factor made it possible to obtain the temperature distribution and the developed code was implemented in the form of UDF and used as boundary conditions in the CFD model of the absorber to simulate the flow of air and heat transfer. The good ability of the receiver to transfer heat to the fluid is proved with a 92% thermal efficiency obtained. Then the combination of the Kriging surface response method and the MOGA allowed the mathematical optimization of the receiver. The response surface results showed that the most influencing parameter on the outlet temperature is porosity with 62%, due to the fact that it strongly impacts on the exchange surfaces between the fluid and the porous matrix. The results obtained by MOGA made it possible to obtain the best combinations of parameters allowing the temperature and the amount of energy to be maximized at the output of the receiver.
•Net-radiation method using infinitesimal areas for cavity radiative exchange model.•Numerical model of the cavity-absorber block.•Kriging Response for quantitative and qualitative analysis of the design parameters.•MOGA optimization gives optimums temperature outlet and thermal efficiencies couples.•MOGA gives compromise between temperatures outlet and thermal efficiencies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.09.176</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3920-0205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-01, Vol.166, p.519-529 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02153248v1 |
source | Elsevier ScienceDirect Journals |
subjects | Absorbers Air solar receiver Boundary conditions Brayton cycle CFD modeling Chemical and Process Engineering Computer simulation CSP Engineering Sciences Flow simulation Heat exchange Heat transfer Iterative methods Kriging interpolation Mathematical models Matrix methods MOGA Net-radiation method Numerical analysis Optimization Parameters Photovoltaic cells Porosity Porous media Radiation Response surface method optimization Response surface methodology Solar energy Temperature distribution Temperature effects Thermodynamic efficiency |
title | Numerical analysis and optimization of an indirectly irradiated solar receiver for a Brayton cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20and%20optimization%20of%20an%20indirectly%20irradiated%20solar%20receiver%20for%20a%20Brayton%20cycle&rft.jtitle=Energy%20(Oxford)&rft.au=Ndiogou,%20Baye%20A.&rft.date=2019-01-01&rft.volume=166&rft.spage=519&rft.epage=529&rft.pages=519-529&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.09.176&rft_dat=%3Cproquest_hal_p%3E2172647177%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2172647177&rft_id=info:pmid/&rft_els_id=S0360544218319480&rfr_iscdi=true |