Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses
Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delive...
Gespeichert in:
Veröffentlicht in: | International journal of nano dimension 2011-07, Vol.2 (1), p.17-23 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | International journal of nano dimension |
container_volume | 2 |
creator | Pépin-Donat, B Campillo, C Quemeneur, F Rinaudo, M Marques, C Schröder, A Maret, G |
description | Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two categories of composite polymer-vesicles. The first category is prepared by encapsulating solutions or networks of poly (N-isopropyl-acrylamide) (polyNIPAM) chains. PolyNIPAM exhibiting a Low Critical Solution Temperature (LCST) at 32°C, composite NIPAM-vesicles are thermo-responsive. The second category of vesicles is obtained by adsorption of polyelectrolytes (chitosan or hyaluronan or both layer-by-layer) on their outer surface. Chitosan and hyaluronan are respectively positively and negatively charged polymers; both are biocompatible and allow to tune the net charge of the vesicles. All these composite vesicles hold promise as passive mechanical models of cells and as drug carriers because of their improved structural and mechanical properties and enhanced resistance to various mechanical or chemical stresses if compared to unmodified vesicles. Poly (NIPAM) vesicles present the additional advantage to be potential thermo-responsive drug carriers, collapsing reversibly at 32°C with a release of 98% of their internal solution. |
doi_str_mv | 10.7508/ijnd.2011.01.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02148160v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801953201</sourcerecordid><originalsourceid>FETCH-LOGICAL-h189t-5639ac79a5c9800356f594c7d5b68e213737f04156f6e08634a39a8b348743933</originalsourceid><addsrcrecordid>eNotjt1LwzAUxYMoOObefQz44sDOm6T5qG9jqBvUjwd9Lmmb0YyuqUlb2H9vZF4u3Mvhdw4HoVsCK8lBPdpDV68oELKCuEAv0IxSqhIOPLuMP4BKlBLqGi1COEAcAZQJNUM6t72tbYUrd-xdsIPBkwm2ak3ApQ6mxq7DvWtP9--7z_Xb8gFXjR1c0B12Hjcn3Y7edbp7wqVp9GTd6PHY1cbjMHgTggk36Gqv22AW_3eOvl-evzbbJP943W3WedIQlQ0JFyzTlcw0rzIFwLjY8yytZM1LoQwlTDK5h5REXRhQgqU6GlTJUiVTljE2R8tzbqPbovf2qP2pcNoW23Ve_GlASaqIgIlE9u7M9t79jCYMxSEW72K9ghCiSKSkZL8gxmRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1118116077</pqid></control><display><type>article</type><title>Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pépin-Donat, B ; Campillo, C ; Quemeneur, F ; Rinaudo, M ; Marques, C ; Schröder, A ; Maret, G</creator><creatorcontrib>Pépin-Donat, B ; Campillo, C ; Quemeneur, F ; Rinaudo, M ; Marques, C ; Schröder, A ; Maret, G</creatorcontrib><description>Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two categories of composite polymer-vesicles. The first category is prepared by encapsulating solutions or networks of poly (N-isopropyl-acrylamide) (polyNIPAM) chains. PolyNIPAM exhibiting a Low Critical Solution Temperature (LCST) at 32°C, composite NIPAM-vesicles are thermo-responsive. The second category of vesicles is obtained by adsorption of polyelectrolytes (chitosan or hyaluronan or both layer-by-layer) on their outer surface. Chitosan and hyaluronan are respectively positively and negatively charged polymers; both are biocompatible and allow to tune the net charge of the vesicles. All these composite vesicles hold promise as passive mechanical models of cells and as drug carriers because of their improved structural and mechanical properties and enhanced resistance to various mechanical or chemical stresses if compared to unmodified vesicles. Poly (NIPAM) vesicles present the additional advantage to be potential thermo-responsive drug carriers, collapsing reversibly at 32°C with a release of 98% of their internal solution.</description><identifier>ISSN: 2008-8868</identifier><identifier>EISSN: 2228-5059</identifier><identifier>DOI: 10.7508/ijnd.2011.01.002</identifier><language>eng</language><publisher>Witney: OICC Press</publisher><subject>Biological Physics ; Chemical Sciences ; Physics ; Polymers</subject><ispartof>International journal of nano dimension, 2011-07, Vol.2 (1), p.17-23</ispartof><rights>Copyright International Journal of Nano Dimension (IJND) Summer 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4698-8643 ; 0000-0002-3952-0498 ; 0000-0002-7962-4507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27928,27929</link.rule.ids><backlink>$$Uhttps://univ-evry.hal.science/hal-02148160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pépin-Donat, B</creatorcontrib><creatorcontrib>Campillo, C</creatorcontrib><creatorcontrib>Quemeneur, F</creatorcontrib><creatorcontrib>Rinaudo, M</creatorcontrib><creatorcontrib>Marques, C</creatorcontrib><creatorcontrib>Schröder, A</creatorcontrib><creatorcontrib>Maret, G</creatorcontrib><title>Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses</title><title>International journal of nano dimension</title><description>Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two categories of composite polymer-vesicles. The first category is prepared by encapsulating solutions or networks of poly (N-isopropyl-acrylamide) (polyNIPAM) chains. PolyNIPAM exhibiting a Low Critical Solution Temperature (LCST) at 32°C, composite NIPAM-vesicles are thermo-responsive. The second category of vesicles is obtained by adsorption of polyelectrolytes (chitosan or hyaluronan or both layer-by-layer) on their outer surface. Chitosan and hyaluronan are respectively positively and negatively charged polymers; both are biocompatible and allow to tune the net charge of the vesicles. All these composite vesicles hold promise as passive mechanical models of cells and as drug carriers because of their improved structural and mechanical properties and enhanced resistance to various mechanical or chemical stresses if compared to unmodified vesicles. Poly (NIPAM) vesicles present the additional advantage to be potential thermo-responsive drug carriers, collapsing reversibly at 32°C with a release of 98% of their internal solution.</description><subject>Biological Physics</subject><subject>Chemical Sciences</subject><subject>Physics</subject><subject>Polymers</subject><issn>2008-8868</issn><issn>2228-5059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjt1LwzAUxYMoOObefQz44sDOm6T5qG9jqBvUjwd9Lmmb0YyuqUlb2H9vZF4u3Mvhdw4HoVsCK8lBPdpDV68oELKCuEAv0IxSqhIOPLuMP4BKlBLqGi1COEAcAZQJNUM6t72tbYUrd-xdsIPBkwm2ak3ApQ6mxq7DvWtP9--7z_Xb8gFXjR1c0B12Hjcn3Y7edbp7wqVp9GTd6PHY1cbjMHgTggk36Gqv22AW_3eOvl-evzbbJP943W3WedIQlQ0JFyzTlcw0rzIFwLjY8yytZM1LoQwlTDK5h5REXRhQgqU6GlTJUiVTljE2R8tzbqPbovf2qP2pcNoW23Ve_GlASaqIgIlE9u7M9t79jCYMxSEW72K9ghCiSKSkZL8gxmRw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Pépin-Donat, B</creator><creator>Campillo, C</creator><creator>Quemeneur, F</creator><creator>Rinaudo, M</creator><creator>Marques, C</creator><creator>Schröder, A</creator><creator>Maret, G</creator><general>OICC Press</general><general>Tonekabon branch of the Islamic Azad University</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4698-8643</orcidid><orcidid>https://orcid.org/0000-0002-3952-0498</orcidid><orcidid>https://orcid.org/0000-0002-7962-4507</orcidid></search><sort><creationdate>20110701</creationdate><title>Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses</title><author>Pépin-Donat, B ; Campillo, C ; Quemeneur, F ; Rinaudo, M ; Marques, C ; Schröder, A ; Maret, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h189t-5639ac79a5c9800356f594c7d5b68e213737f04156f6e08634a39a8b348743933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Physics</topic><topic>Chemical Sciences</topic><topic>Physics</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pépin-Donat, B</creatorcontrib><creatorcontrib>Campillo, C</creatorcontrib><creatorcontrib>Quemeneur, F</creatorcontrib><creatorcontrib>Rinaudo, M</creatorcontrib><creatorcontrib>Marques, C</creatorcontrib><creatorcontrib>Schröder, A</creatorcontrib><creatorcontrib>Maret, G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of nano dimension</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pépin-Donat, B</au><au>Campillo, C</au><au>Quemeneur, F</au><au>Rinaudo, M</au><au>Marques, C</au><au>Schröder, A</au><au>Maret, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses</atitle><jtitle>International journal of nano dimension</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>2008-8868</issn><eissn>2228-5059</eissn><abstract>Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two categories of composite polymer-vesicles. The first category is prepared by encapsulating solutions or networks of poly (N-isopropyl-acrylamide) (polyNIPAM) chains. PolyNIPAM exhibiting a Low Critical Solution Temperature (LCST) at 32°C, composite NIPAM-vesicles are thermo-responsive. The second category of vesicles is obtained by adsorption of polyelectrolytes (chitosan or hyaluronan or both layer-by-layer) on their outer surface. Chitosan and hyaluronan are respectively positively and negatively charged polymers; both are biocompatible and allow to tune the net charge of the vesicles. All these composite vesicles hold promise as passive mechanical models of cells and as drug carriers because of their improved structural and mechanical properties and enhanced resistance to various mechanical or chemical stresses if compared to unmodified vesicles. Poly (NIPAM) vesicles present the additional advantage to be potential thermo-responsive drug carriers, collapsing reversibly at 32°C with a release of 98% of their internal solution.</abstract><cop>Witney</cop><pub>OICC Press</pub><doi>10.7508/ijnd.2011.01.002</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4698-8643</orcidid><orcidid>https://orcid.org/0000-0002-3952-0498</orcidid><orcidid>https://orcid.org/0000-0002-7962-4507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2008-8868 |
ispartof | International journal of nano dimension, 2011-07, Vol.2 (1), p.17-23 |
issn | 2008-8868 2228-5059 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02148160v1 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Biological Physics Chemical Sciences Physics Polymers |
title | Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipidic%20composite%20vesicles%20based%20on%20poly(NIPAM),%20chitosan%20or%20hyaluronan:%20behaviour%20under%20stresses&rft.jtitle=International%20journal%20of%20nano%20dimension&rft.au=P%C3%A9pin-Donat,%20B&rft.date=2011-07-01&rft.volume=2&rft.issue=1&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=2008-8868&rft.eissn=2228-5059&rft_id=info:doi/10.7508/ijnd.2011.01.002&rft_dat=%3Cproquest_hal_p%3E2801953201%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1118116077&rft_id=info:pmid/&rfr_iscdi=true |