MIND: An approach to optimize communication time via middleware tuning

Minimizing the communication time due to the transfer over a network of the intermediary results produced during the execution of a distributed query is a fundamental problem in distributed database management systems. We take a new look at this problem by investigating the relationship between the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems (Oxford) 2019-05, Vol.82, p.17-32
Hauptverfasser: Belghoul, Abdeslem, Baïou, Mourad, Toumani, Farouk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 17
container_title Information systems (Oxford)
container_volume 82
creator Belghoul, Abdeslem
Baïou, Mourad
Toumani, Farouk
description Minimizing the communication time due to the transfer over a network of the intermediary results produced during the execution of a distributed query is a fundamental problem in distributed database management systems. We take a new look at this problem by investigating the relationship between the communication time and a remote data access middleware. We focus on two middleware parameters that are manually tuned by database administrators or programmers: the fetch size (i.e., the number of tuples that are communicated at once) and the message size (i.e., the size of the buffer at the middleware level). We present an experimental study which shows that these parameters have a crucial impact on the communication time. Then, we propose the MIND framework, which tunes the aforementioned middleware parameters, while adapting to different queries (that may vary in terms of selectivity) and networks (that may vary in terms of bandwidth). The main technical contributions of MIND are (i) a communication time estimation function that takes into account the middleware parameters, the size of the query result and the network environment, and (ii) an iterative optimization algorithm to find the fetch size and the message size that allow a good trade-off between low resource consumption and low communication time. We conclude with an experimental study that emphasizes the effectiveness of the MIND framework.
doi_str_mv 10.1016/j.is.2018.12.005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02147736v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306437918300887</els_id><sourcerecordid>2216266560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-841a4bac9a4fe9e4f3c7636ef7851b4d4e94c3ffd9986a7a2c359fbdb303b8663</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM1piYkjwV5y4W1UorVRggdlyHJs6auLgpEXw1-MqiI3ppHfvd7r3ALjGKMUI87s6dX1KEC5STFKEshMwwUVOE45yfgomiCKeMJqLc3DR9zVCiGRCTMDyaf18P4PzFqquC17pLRw89N3gGvdtoPZNs2-dVoPzLYyigQenYOOqamc-VTBwiOv2_RKcWbXrzdXvnIK35cPrYpVsXh7Xi_km0TTjQ1IwrFiptFDMGmGYpTrnlBubFxkuWcWMYJpaWwlRcJUrEjFhy6qkiJYF53QKbse7W7WTXXCNCl_SKydX8408aohglueUH3D03ozemOtjb_pB1n4f2vieJARzwnnGUXSh0aWD7_tg7N9ZjOSxWVlLF4nYrMRExmYjMhsRE5MenAmy18602lQuGD3Iyrv_4R_y_37l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216266560</pqid></control><display><type>article</type><title>MIND: An approach to optimize communication time via middleware tuning</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Belghoul, Abdeslem ; Baïou, Mourad ; Toumani, Farouk</creator><creatorcontrib>Belghoul, Abdeslem ; Baïou, Mourad ; Toumani, Farouk</creatorcontrib><description>Minimizing the communication time due to the transfer over a network of the intermediary results produced during the execution of a distributed query is a fundamental problem in distributed database management systems. We take a new look at this problem by investigating the relationship between the communication time and a remote data access middleware. We focus on two middleware parameters that are manually tuned by database administrators or programmers: the fetch size (i.e., the number of tuples that are communicated at once) and the message size (i.e., the size of the buffer at the middleware level). We present an experimental study which shows that these parameters have a crucial impact on the communication time. Then, we propose the MIND framework, which tunes the aforementioned middleware parameters, while adapting to different queries (that may vary in terms of selectivity) and networks (that may vary in terms of bandwidth). The main technical contributions of MIND are (i) a communication time estimation function that takes into account the middleware parameters, the size of the query result and the network environment, and (ii) an iterative optimization algorithm to find the fetch size and the message size that allow a good trade-off between low resource consumption and low communication time. We conclude with an experimental study that emphasizes the effectiveness of the MIND framework.</description><identifier>ISSN: 0306-4379</identifier><identifier>EISSN: 1873-6076</identifier><identifier>DOI: 10.1016/j.is.2018.12.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Automatic tuning ; Communication ; Communication cost model ; Computer Science ; Data access middleware ; Data base management systems ; Distributed query optimization ; Information systems ; Middleware ; Optimization ; Parameters ; Product design ; Selectivity</subject><ispartof>Information systems (Oxford), 2019-05, Vol.82, p.17-32</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-841a4bac9a4fe9e4f3c7636ef7851b4d4e94c3ffd9986a7a2c359fbdb303b8663</citedby><cites>FETCH-LOGICAL-c356t-841a4bac9a4fe9e4f3c7636ef7851b4d4e94c3ffd9986a7a2c359fbdb303b8663</cites><orcidid>0000-0003-0735-7689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.is.2018.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02147736$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belghoul, Abdeslem</creatorcontrib><creatorcontrib>Baïou, Mourad</creatorcontrib><creatorcontrib>Toumani, Farouk</creatorcontrib><title>MIND: An approach to optimize communication time via middleware tuning</title><title>Information systems (Oxford)</title><description>Minimizing the communication time due to the transfer over a network of the intermediary results produced during the execution of a distributed query is a fundamental problem in distributed database management systems. We take a new look at this problem by investigating the relationship between the communication time and a remote data access middleware. We focus on two middleware parameters that are manually tuned by database administrators or programmers: the fetch size (i.e., the number of tuples that are communicated at once) and the message size (i.e., the size of the buffer at the middleware level). We present an experimental study which shows that these parameters have a crucial impact on the communication time. Then, we propose the MIND framework, which tunes the aforementioned middleware parameters, while adapting to different queries (that may vary in terms of selectivity) and networks (that may vary in terms of bandwidth). The main technical contributions of MIND are (i) a communication time estimation function that takes into account the middleware parameters, the size of the query result and the network environment, and (ii) an iterative optimization algorithm to find the fetch size and the message size that allow a good trade-off between low resource consumption and low communication time. We conclude with an experimental study that emphasizes the effectiveness of the MIND framework.</description><subject>Algorithms</subject><subject>Automatic tuning</subject><subject>Communication</subject><subject>Communication cost model</subject><subject>Computer Science</subject><subject>Data access middleware</subject><subject>Data base management systems</subject><subject>Distributed query optimization</subject><subject>Information systems</subject><subject>Middleware</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Product design</subject><subject>Selectivity</subject><issn>0306-4379</issn><issn>1873-6076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM1piYkjwV5y4W1UorVRggdlyHJs6auLgpEXw1-MqiI3ppHfvd7r3ALjGKMUI87s6dX1KEC5STFKEshMwwUVOE45yfgomiCKeMJqLc3DR9zVCiGRCTMDyaf18P4PzFqquC17pLRw89N3gGvdtoPZNs2-dVoPzLYyigQenYOOqamc-VTBwiOv2_RKcWbXrzdXvnIK35cPrYpVsXh7Xi_km0TTjQ1IwrFiptFDMGmGYpTrnlBubFxkuWcWMYJpaWwlRcJUrEjFhy6qkiJYF53QKbse7W7WTXXCNCl_SKydX8408aohglueUH3D03ozemOtjb_pB1n4f2vieJARzwnnGUXSh0aWD7_tg7N9ZjOSxWVlLF4nYrMRExmYjMhsRE5MenAmy18602lQuGD3Iyrv_4R_y_37l</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Belghoul, Abdeslem</creator><creator>Baïou, Mourad</creator><creator>Toumani, Farouk</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0735-7689</orcidid></search><sort><creationdate>201905</creationdate><title>MIND: An approach to optimize communication time via middleware tuning</title><author>Belghoul, Abdeslem ; Baïou, Mourad ; Toumani, Farouk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-841a4bac9a4fe9e4f3c7636ef7851b4d4e94c3ffd9986a7a2c359fbdb303b8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automatic tuning</topic><topic>Communication</topic><topic>Communication cost model</topic><topic>Computer Science</topic><topic>Data access middleware</topic><topic>Data base management systems</topic><topic>Distributed query optimization</topic><topic>Information systems</topic><topic>Middleware</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Product design</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belghoul, Abdeslem</creatorcontrib><creatorcontrib>Baïou, Mourad</creatorcontrib><creatorcontrib>Toumani, Farouk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Information systems (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belghoul, Abdeslem</au><au>Baïou, Mourad</au><au>Toumani, Farouk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIND: An approach to optimize communication time via middleware tuning</atitle><jtitle>Information systems (Oxford)</jtitle><date>2019-05</date><risdate>2019</risdate><volume>82</volume><spage>17</spage><epage>32</epage><pages>17-32</pages><issn>0306-4379</issn><eissn>1873-6076</eissn><abstract>Minimizing the communication time due to the transfer over a network of the intermediary results produced during the execution of a distributed query is a fundamental problem in distributed database management systems. We take a new look at this problem by investigating the relationship between the communication time and a remote data access middleware. We focus on two middleware parameters that are manually tuned by database administrators or programmers: the fetch size (i.e., the number of tuples that are communicated at once) and the message size (i.e., the size of the buffer at the middleware level). We present an experimental study which shows that these parameters have a crucial impact on the communication time. Then, we propose the MIND framework, which tunes the aforementioned middleware parameters, while adapting to different queries (that may vary in terms of selectivity) and networks (that may vary in terms of bandwidth). The main technical contributions of MIND are (i) a communication time estimation function that takes into account the middleware parameters, the size of the query result and the network environment, and (ii) an iterative optimization algorithm to find the fetch size and the message size that allow a good trade-off between low resource consumption and low communication time. We conclude with an experimental study that emphasizes the effectiveness of the MIND framework.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.is.2018.12.005</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0735-7689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-4379
ispartof Information systems (Oxford), 2019-05, Vol.82, p.17-32
issn 0306-4379
1873-6076
language eng
recordid cdi_hal_primary_oai_HAL_hal_02147736v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Algorithms
Automatic tuning
Communication
Communication cost model
Computer Science
Data access middleware
Data base management systems
Distributed query optimization
Information systems
Middleware
Optimization
Parameters
Product design
Selectivity
title MIND: An approach to optimize communication time via middleware tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIND:%20An%20approach%20to%20optimize%20communication%20time%20via%20middleware%20tuning&rft.jtitle=Information%20systems%20(Oxford)&rft.au=Belghoul,%20Abdeslem&rft.date=2019-05&rft.volume=82&rft.spage=17&rft.epage=32&rft.pages=17-32&rft.issn=0306-4379&rft.eissn=1873-6076&rft_id=info:doi/10.1016/j.is.2018.12.005&rft_dat=%3Cproquest_hal_p%3E2216266560%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216266560&rft_id=info:pmid/&rft_els_id=S0306437918300887&rfr_iscdi=true