Adaptive Behavior of a Ditopic Phosphine Ligand
Synthetic, structural and computational studies have been performed to investigate ligand interchange in the fluxional chelate complex [RhCl3{Ph2PACH2C(OA)OEt‐κ2POA}{Ph2PBCH2C(OB)OEt‐κP}], which contains two hybrid phosphine‐ester ligands, one acting as P,O chelator, the other as a P‐monodentate lig...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2019-07, Vol.2019 (25), p.2996-3004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3004 |
---|---|
container_issue | 25 |
container_start_page | 2996 |
container_title | European journal of inorganic chemistry |
container_volume | 2019 |
creator | Renard, Nicolas Brenner, Eric Matt, Dominique Gourlaouen, Christophe |
description | Synthetic, structural and computational studies have been performed to investigate ligand interchange in the fluxional chelate complex [RhCl3{Ph2PACH2C(OA)OEt‐κ2POA}{Ph2PBCH2C(OB)OEt‐κP}], which contains two hybrid phosphine‐ester ligands, one acting as P,O chelator, the other as a P‐monodentate ligand. The observed ligand exchange may occur according to two pathways which both involve four elementary movements: a) oxygen dissociation with formation of a lacunary octahedral RhCl3P2 intermediate; b) migration of the Cl atom trans to PA towards the position trans to PB; c) rotations of the phosphine moieties about the Rh–P bonds, these occurring either concomitantly with the Cl displacement or in a separate step; d) coordination of an oxygen atom of the second phosphine. The two pathways thus differ by conformational changes within two distinct steps. In each pathway the rate‐limiting step is the one involving a movement of the two phosphines, which generates steric frictions between the two PPh2 groups. The calculated theoretical energetic spans of both pathways (ΔG≠ ≈ 17 kcal mol–1) is close to the energy barrier obtained from a variable temperature NMR study carried out in C2D2Cl4 (ΔG≠ = 15.5 kcal mol–1). While one of the pathways leads to an isomer with a Rh‐bound ethoxy O atom, the other results in the isomer having the metal coordinated to the adjacent C=O group. Exchange between the two O atoms of the coordinated ester group occurs readily (ΔGTS = 12.5 kcal mol–1).
Fight for a binding site: Phosphine hemilability in [RhCl3(Ph2PCH2CO2Et‐κ2PO)(Ph2PCH2CO2Et‐κP)] occurs “spontaneously” and is best interpreted in terms of a dissociative, intramolecular mechanism. Steric frictions play an important role in making the ligand interchange process spectroscopically detectable. |
doi_str_mv | 10.1002/ejic.201900571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02146481v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252004513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3511-1e1f57d952b350c04d50a1fefeda265971c8625de7fad9c52e7a0993731769173</originalsourceid><addsrcrecordid>eNqFkL1PwzAUxC0EEqWwMkdiYkj7nj_ieCyl0KJIMMBsGcchrkod4rao_z2pgsrI9E5PvzudjpBrhBEC0LFbejuigApASDwhAwSlUshyetppzniKiufn5CLGJQAwYNmAjCelaTZ-55I7V5udD20SqsQk934TGm-TlzrEpvZrlxT-w6zLS3JWmVV0V793SN4eZq_TeVo8Py6mkyK1TCCm6LASslSCvjMBFngpwGDlKlcamgkl0eYZFaWTlSmVFdRJ07VlkqHMFEo2JLd9bm1Wumn9p2n3Ohiv55NCH35AkWc8xx127E3PNm342rq40cuwbdddPU2poABcIOuoUU_ZNsTYuuoYi6APA-rDgPo4YGdQveHbr9z-H1rPnhbTP-8PYIBw9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252004513</pqid></control><display><type>article</type><title>Adaptive Behavior of a Ditopic Phosphine Ligand</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Renard, Nicolas ; Brenner, Eric ; Matt, Dominique ; Gourlaouen, Christophe</creator><creatorcontrib>Renard, Nicolas ; Brenner, Eric ; Matt, Dominique ; Gourlaouen, Christophe</creatorcontrib><description>Synthetic, structural and computational studies have been performed to investigate ligand interchange in the fluxional chelate complex [RhCl3{Ph2PACH2C(OA)OEt‐κ2POA}{Ph2PBCH2C(OB)OEt‐κP}], which contains two hybrid phosphine‐ester ligands, one acting as P,O chelator, the other as a P‐monodentate ligand. The observed ligand exchange may occur according to two pathways which both involve four elementary movements: a) oxygen dissociation with formation of a lacunary octahedral RhCl3P2 intermediate; b) migration of the Cl atom trans to PA towards the position trans to PB; c) rotations of the phosphine moieties about the Rh–P bonds, these occurring either concomitantly with the Cl displacement or in a separate step; d) coordination of an oxygen atom of the second phosphine. The two pathways thus differ by conformational changes within two distinct steps. In each pathway the rate‐limiting step is the one involving a movement of the two phosphines, which generates steric frictions between the two PPh2 groups. The calculated theoretical energetic spans of both pathways (ΔG≠ ≈ 17 kcal mol–1) is close to the energy barrier obtained from a variable temperature NMR study carried out in C2D2Cl4 (ΔG≠ = 15.5 kcal mol–1). While one of the pathways leads to an isomer with a Rh‐bound ethoxy O atom, the other results in the isomer having the metal coordinated to the adjacent C=O group. Exchange between the two O atoms of the coordinated ester group occurs readily (ΔGTS = 12.5 kcal mol–1).
Fight for a binding site: Phosphine hemilability in [RhCl3(Ph2PCH2CO2Et‐κ2PO)(Ph2PCH2CO2Et‐κP)] occurs “spontaneously” and is best interpreted in terms of a dissociative, intramolecular mechanism. Steric frictions play an important role in making the ligand interchange process spectroscopically detectable.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201900571</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adaptive behavior ; Chelates ; Chemical Sciences ; Computational chemistry ; Coordination compounds ; Exchanging ; Fluxionality ; Inorganic chemistry ; Ligands ; Mathematical analysis ; Migration ; NMR ; Nuclear magnetic resonance ; P ligands ; Phosphines</subject><ispartof>European journal of inorganic chemistry, 2019-07, Vol.2019 (25), p.2996-3004</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3511-1e1f57d952b350c04d50a1fefeda265971c8625de7fad9c52e7a0993731769173</citedby><cites>FETCH-LOGICAL-c3511-1e1f57d952b350c04d50a1fefeda265971c8625de7fad9c52e7a0993731769173</cites><orcidid>0000-0001-7928-0719 ; 0000-0002-2409-2849 ; 0000-0003-1984-2294 ; 0000-0003-2956-6887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201900571$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201900571$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02146481$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Renard, Nicolas</creatorcontrib><creatorcontrib>Brenner, Eric</creatorcontrib><creatorcontrib>Matt, Dominique</creatorcontrib><creatorcontrib>Gourlaouen, Christophe</creatorcontrib><title>Adaptive Behavior of a Ditopic Phosphine Ligand</title><title>European journal of inorganic chemistry</title><description>Synthetic, structural and computational studies have been performed to investigate ligand interchange in the fluxional chelate complex [RhCl3{Ph2PACH2C(OA)OEt‐κ2POA}{Ph2PBCH2C(OB)OEt‐κP}], which contains two hybrid phosphine‐ester ligands, one acting as P,O chelator, the other as a P‐monodentate ligand. The observed ligand exchange may occur according to two pathways which both involve four elementary movements: a) oxygen dissociation with formation of a lacunary octahedral RhCl3P2 intermediate; b) migration of the Cl atom trans to PA towards the position trans to PB; c) rotations of the phosphine moieties about the Rh–P bonds, these occurring either concomitantly with the Cl displacement or in a separate step; d) coordination of an oxygen atom of the second phosphine. The two pathways thus differ by conformational changes within two distinct steps. In each pathway the rate‐limiting step is the one involving a movement of the two phosphines, which generates steric frictions between the two PPh2 groups. The calculated theoretical energetic spans of both pathways (ΔG≠ ≈ 17 kcal mol–1) is close to the energy barrier obtained from a variable temperature NMR study carried out in C2D2Cl4 (ΔG≠ = 15.5 kcal mol–1). While one of the pathways leads to an isomer with a Rh‐bound ethoxy O atom, the other results in the isomer having the metal coordinated to the adjacent C=O group. Exchange between the two O atoms of the coordinated ester group occurs readily (ΔGTS = 12.5 kcal mol–1).
Fight for a binding site: Phosphine hemilability in [RhCl3(Ph2PCH2CO2Et‐κ2PO)(Ph2PCH2CO2Et‐κP)] occurs “spontaneously” and is best interpreted in terms of a dissociative, intramolecular mechanism. Steric frictions play an important role in making the ligand interchange process spectroscopically detectable.</description><subject>Adaptive behavior</subject><subject>Chelates</subject><subject>Chemical Sciences</subject><subject>Computational chemistry</subject><subject>Coordination compounds</subject><subject>Exchanging</subject><subject>Fluxionality</subject><subject>Inorganic chemistry</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>P ligands</subject><subject>Phosphines</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAUxC0EEqWwMkdiYkj7nj_ieCyl0KJIMMBsGcchrkod4rao_z2pgsrI9E5PvzudjpBrhBEC0LFbejuigApASDwhAwSlUshyetppzniKiufn5CLGJQAwYNmAjCelaTZ-55I7V5udD20SqsQk934TGm-TlzrEpvZrlxT-w6zLS3JWmVV0V793SN4eZq_TeVo8Py6mkyK1TCCm6LASslSCvjMBFngpwGDlKlcamgkl0eYZFaWTlSmVFdRJ07VlkqHMFEo2JLd9bm1Wumn9p2n3Ohiv55NCH35AkWc8xx127E3PNm342rq40cuwbdddPU2poABcIOuoUU_ZNsTYuuoYi6APA-rDgPo4YGdQveHbr9z-H1rPnhbTP-8PYIBw9A</recordid><startdate>20190707</startdate><enddate>20190707</enddate><creator>Renard, Nicolas</creator><creator>Brenner, Eric</creator><creator>Matt, Dominique</creator><creator>Gourlaouen, Christophe</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7928-0719</orcidid><orcidid>https://orcid.org/0000-0002-2409-2849</orcidid><orcidid>https://orcid.org/0000-0003-1984-2294</orcidid><orcidid>https://orcid.org/0000-0003-2956-6887</orcidid></search><sort><creationdate>20190707</creationdate><title>Adaptive Behavior of a Ditopic Phosphine Ligand</title><author>Renard, Nicolas ; Brenner, Eric ; Matt, Dominique ; Gourlaouen, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3511-1e1f57d952b350c04d50a1fefeda265971c8625de7fad9c52e7a0993731769173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive behavior</topic><topic>Chelates</topic><topic>Chemical Sciences</topic><topic>Computational chemistry</topic><topic>Coordination compounds</topic><topic>Exchanging</topic><topic>Fluxionality</topic><topic>Inorganic chemistry</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>P ligands</topic><topic>Phosphines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renard, Nicolas</creatorcontrib><creatorcontrib>Brenner, Eric</creatorcontrib><creatorcontrib>Matt, Dominique</creatorcontrib><creatorcontrib>Gourlaouen, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renard, Nicolas</au><au>Brenner, Eric</au><au>Matt, Dominique</au><au>Gourlaouen, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Behavior of a Ditopic Phosphine Ligand</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2019-07-07</date><risdate>2019</risdate><volume>2019</volume><issue>25</issue><spage>2996</spage><epage>3004</epage><pages>2996-3004</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Synthetic, structural and computational studies have been performed to investigate ligand interchange in the fluxional chelate complex [RhCl3{Ph2PACH2C(OA)OEt‐κ2POA}{Ph2PBCH2C(OB)OEt‐κP}], which contains two hybrid phosphine‐ester ligands, one acting as P,O chelator, the other as a P‐monodentate ligand. The observed ligand exchange may occur according to two pathways which both involve four elementary movements: a) oxygen dissociation with formation of a lacunary octahedral RhCl3P2 intermediate; b) migration of the Cl atom trans to PA towards the position trans to PB; c) rotations of the phosphine moieties about the Rh–P bonds, these occurring either concomitantly with the Cl displacement or in a separate step; d) coordination of an oxygen atom of the second phosphine. The two pathways thus differ by conformational changes within two distinct steps. In each pathway the rate‐limiting step is the one involving a movement of the two phosphines, which generates steric frictions between the two PPh2 groups. The calculated theoretical energetic spans of both pathways (ΔG≠ ≈ 17 kcal mol–1) is close to the energy barrier obtained from a variable temperature NMR study carried out in C2D2Cl4 (ΔG≠ = 15.5 kcal mol–1). While one of the pathways leads to an isomer with a Rh‐bound ethoxy O atom, the other results in the isomer having the metal coordinated to the adjacent C=O group. Exchange between the two O atoms of the coordinated ester group occurs readily (ΔGTS = 12.5 kcal mol–1).
Fight for a binding site: Phosphine hemilability in [RhCl3(Ph2PCH2CO2Et‐κ2PO)(Ph2PCH2CO2Et‐κP)] occurs “spontaneously” and is best interpreted in terms of a dissociative, intramolecular mechanism. Steric frictions play an important role in making the ligand interchange process spectroscopically detectable.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201900571</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7928-0719</orcidid><orcidid>https://orcid.org/0000-0002-2409-2849</orcidid><orcidid>https://orcid.org/0000-0003-1984-2294</orcidid><orcidid>https://orcid.org/0000-0003-2956-6887</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2019-07, Vol.2019 (25), p.2996-3004 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02146481v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive behavior Chelates Chemical Sciences Computational chemistry Coordination compounds Exchanging Fluxionality Inorganic chemistry Ligands Mathematical analysis Migration NMR Nuclear magnetic resonance P ligands Phosphines |
title | Adaptive Behavior of a Ditopic Phosphine Ligand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Behavior%20of%20a%20Ditopic%20Phosphine%20Ligand&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Renard,%20Nicolas&rft.date=2019-07-07&rft.volume=2019&rft.issue=25&rft.spage=2996&rft.epage=3004&rft.pages=2996-3004&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201900571&rft_dat=%3Cproquest_hal_p%3E2252004513%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252004513&rft_id=info:pmid/&rfr_iscdi=true |