New filtering for AtMostNValue and its weighted variant: A Lagrangian approach

The AtMostNValue global constraint, which restricts the maximum number of distinct values taken by a set of variables, is a well known NP-Hard global constraint. The weighted version of the constraint, AtMostWValue , where each value is associated with a weight or cost, is a useful and natural exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constraints : an international journal 2015-07, Vol.20 (3), p.362-380
Hauptverfasser: Cambazard, Hadrien, Fages, Jean-Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 3
container_start_page 362
container_title Constraints : an international journal
container_volume 20
creator Cambazard, Hadrien
Fages, Jean-Guillaume
description The AtMostNValue global constraint, which restricts the maximum number of distinct values taken by a set of variables, is a well known NP-Hard global constraint. The weighted version of the constraint, AtMostWValue , where each value is associated with a weight or cost, is a useful and natural extension. Both constraints occur in many industrial applications where the number and the cost of some resources have to be minimized. This paper introduces a new filtering algorithm based on a Lagrangian relaxation for both constraints. This contribution is illustrated on problems related to facility location, which is a fundamental class of problems in operations research and management sciences. Preliminary evaluations show that the filtering power of the Lagrangian relaxation can provide significant improvements over the state-of-the-art algorithm for these constraints. We believe it can help to bridge the gap between constraint programming and linear programming approaches for a large class of problems related to facility location.
doi_str_mv 10.1007/s10601-015-9191-0
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02143865v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02143865v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bd8359fbde2ecb7f558a3429ae331e93bc213dfc3577e1cc5f598591c8b4d0213</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9i8MhjsXNzEbFEFFCmUBVgtx7FTVyGJ7LSIf4-jIEame3f33kn3IXTN6C2jNLsLjK4oI5RxIpiI4gQtGM8SIoCnp1FDDiRjAOfoIoQ9pVRkkC7Qdmu-sHXtaLzrGmx7j4vxpQ_j9kO1B4NVV2M3BvxlXLMbTY2PyjvVjfe4wKVqvOqa2GI1DL5XeneJzqxqg7n6rUv0_vjwtt6Q8vXpeV2URINIRlLVOXBhq9okRleZ5TxXkCZCGQBmBFQ6YVBbDTzLDNOaWy5yLpjOq7SmcbdEN_PdnWrl4N2n8t-yV05uilJOs2hKIV_x4-Rls1f7PgRv7F-AUTnBkzM8GeHJCZ6kMZPMmTBMXIyX-_7gu_jSP6EfKMFxLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New filtering for AtMostNValue and its weighted variant: A Lagrangian approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cambazard, Hadrien ; Fages, Jean-Guillaume</creator><creatorcontrib>Cambazard, Hadrien ; Fages, Jean-Guillaume</creatorcontrib><description>The AtMostNValue global constraint, which restricts the maximum number of distinct values taken by a set of variables, is a well known NP-Hard global constraint. The weighted version of the constraint, AtMostWValue , where each value is associated with a weight or cost, is a useful and natural extension. Both constraints occur in many industrial applications where the number and the cost of some resources have to be minimized. This paper introduces a new filtering algorithm based on a Lagrangian relaxation for both constraints. This contribution is illustrated on problems related to facility location, which is a fundamental class of problems in operations research and management sciences. Preliminary evaluations show that the filtering power of the Lagrangian relaxation can provide significant improvements over the state-of-the-art algorithm for these constraints. We believe it can help to bridge the gap between constraint programming and linear programming approaches for a large class of problems related to facility location.</description><identifier>ISSN: 1383-7133</identifier><identifier>EISSN: 1572-9354</identifier><identifier>DOI: 10.1007/s10601-015-9191-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Operations Research ; Operations Research/Decision Theory ; Optimization</subject><ispartof>Constraints : an international journal, 2015-07, Vol.20 (3), p.362-380</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bd8359fbde2ecb7f558a3429ae331e93bc213dfc3577e1cc5f598591c8b4d0213</citedby><cites>FETCH-LOGICAL-c392t-bd8359fbde2ecb7f558a3429ae331e93bc213dfc3577e1cc5f598591c8b4d0213</cites><orcidid>0000-0001-5638-4777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10601-015-9191-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10601-015-9191-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02143865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cambazard, Hadrien</creatorcontrib><creatorcontrib>Fages, Jean-Guillaume</creatorcontrib><title>New filtering for AtMostNValue and its weighted variant: A Lagrangian approach</title><title>Constraints : an international journal</title><addtitle>Constraints</addtitle><description>The AtMostNValue global constraint, which restricts the maximum number of distinct values taken by a set of variables, is a well known NP-Hard global constraint. The weighted version of the constraint, AtMostWValue , where each value is associated with a weight or cost, is a useful and natural extension. Both constraints occur in many industrial applications where the number and the cost of some resources have to be minimized. This paper introduces a new filtering algorithm based on a Lagrangian relaxation for both constraints. This contribution is illustrated on problems related to facility location, which is a fundamental class of problems in operations research and management sciences. Preliminary evaluations show that the filtering power of the Lagrangian relaxation can provide significant improvements over the state-of-the-art algorithm for these constraints. We believe it can help to bridge the gap between constraint programming and linear programming approaches for a large class of problems related to facility location.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><issn>1383-7133</issn><issn>1572-9354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9i8MhjsXNzEbFEFFCmUBVgtx7FTVyGJ7LSIf4-jIEame3f33kn3IXTN6C2jNLsLjK4oI5RxIpiI4gQtGM8SIoCnp1FDDiRjAOfoIoQ9pVRkkC7Qdmu-sHXtaLzrGmx7j4vxpQ_j9kO1B4NVV2M3BvxlXLMbTY2PyjvVjfe4wKVqvOqa2GI1DL5XeneJzqxqg7n6rUv0_vjwtt6Q8vXpeV2URINIRlLVOXBhq9okRleZ5TxXkCZCGQBmBFQ6YVBbDTzLDNOaWy5yLpjOq7SmcbdEN_PdnWrl4N2n8t-yV05uilJOs2hKIV_x4-Rls1f7PgRv7F-AUTnBkzM8GeHJCZ6kMZPMmTBMXIyX-_7gu_jSP6EfKMFxLw</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Cambazard, Hadrien</creator><creator>Fages, Jean-Guillaume</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5638-4777</orcidid></search><sort><creationdate>20150701</creationdate><title>New filtering for AtMostNValue and its weighted variant: A Lagrangian approach</title><author>Cambazard, Hadrien ; Fages, Jean-Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bd8359fbde2ecb7f558a3429ae331e93bc213dfc3577e1cc5f598591c8b4d0213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cambazard, Hadrien</creatorcontrib><creatorcontrib>Fages, Jean-Guillaume</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Constraints : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cambazard, Hadrien</au><au>Fages, Jean-Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New filtering for AtMostNValue and its weighted variant: A Lagrangian approach</atitle><jtitle>Constraints : an international journal</jtitle><stitle>Constraints</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>20</volume><issue>3</issue><spage>362</spage><epage>380</epage><pages>362-380</pages><issn>1383-7133</issn><eissn>1572-9354</eissn><abstract>The AtMostNValue global constraint, which restricts the maximum number of distinct values taken by a set of variables, is a well known NP-Hard global constraint. The weighted version of the constraint, AtMostWValue , where each value is associated with a weight or cost, is a useful and natural extension. Both constraints occur in many industrial applications where the number and the cost of some resources have to be minimized. This paper introduces a new filtering algorithm based on a Lagrangian relaxation for both constraints. This contribution is illustrated on problems related to facility location, which is a fundamental class of problems in operations research and management sciences. Preliminary evaluations show that the filtering power of the Lagrangian relaxation can provide significant improvements over the state-of-the-art algorithm for these constraints. We believe it can help to bridge the gap between constraint programming and linear programming approaches for a large class of problems related to facility location.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10601-015-9191-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5638-4777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-7133
ispartof Constraints : an international journal, 2015-07, Vol.20 (3), p.362-380
issn 1383-7133
1572-9354
language eng
recordid cdi_hal_primary_oai_HAL_hal_02143865v1
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Operations Research
Operations Research/Decision Theory
Optimization
title New filtering for AtMostNValue and its weighted variant: A Lagrangian approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20filtering%20for%20AtMostNValue%20and%20its%20weighted%20variant:%20A%20Lagrangian%20approach&rft.jtitle=Constraints%20:%20an%20international%20journal&rft.au=Cambazard,%20Hadrien&rft.date=2015-07-01&rft.volume=20&rft.issue=3&rft.spage=362&rft.epage=380&rft.pages=362-380&rft.issn=1383-7133&rft.eissn=1572-9354&rft_id=info:doi/10.1007/s10601-015-9191-0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02143865v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true