Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw

In this study, coriander straw fiber was effectively incorporated as a reinforcing filler in polypropylene and biobased low-density polyethylene composite materials through twin-screw extrusion compounding and injection molding. Maleic anhydride-grafted copolymers were added as a coupling agent and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2018-10, Vol.113, p.254-263
Hauptverfasser: Uitterhaegen, E., Parinet, J., Labonne, L., Mérian, T., Ballas, S., Véronèse, T., Merah, O., Talou, T., Stevens, C.V., Chabert, F., Evon, Ph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue
container_start_page 254
container_title Composites. Part A, Applied science and manufacturing
container_volume 113
creator Uitterhaegen, E.
Parinet, J.
Labonne, L.
Mérian, T.
Ballas, S.
Véronèse, T.
Merah, O.
Talou, T.
Stevens, C.V.
Chabert, F.
Evon, Ph
description In this study, coriander straw fiber was effectively incorporated as a reinforcing filler in polypropylene and biobased low-density polyethylene composite materials through twin-screw extrusion compounding and injection molding. Maleic anhydride-grafted copolymers were added as a coupling agent and effectively provided fiber/matrix compatibilization. With a significant reinforcing effect, resulting in a 50% increase in the flexural and tensile strength (from 19 to 28 MPa and from 12 to 17 MPa, respectively, for polypropylene composites) as compared to the native polymer, coriander straw allowed the production of 40% filled thermoplastic biocomposites with adequate mechanical properties comparable to those of commercial wood fibers, excellent durability in terms of UV and hygrothermal weathering and high potential for recycling. At the same time, such coriander biocomposites show a favorable cost structure, with 28% reduction of the granule cost as compared to wood fiber composites.
doi_str_mv 10.1016/j.compositesa.2018.07.038
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02134658v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X18303087</els_id><sourcerecordid>S1359835X18303087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7ebc1559835cfea0aca63869bfa992088aae19f540293714be739bd7e70a426a3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKvfIR4Fd002-yc5lqJWKOhBwVuYzc7alN1NSdaWfntTKurR0wzDe29mfoRcc5Zyxsu7dWpcv3HBjhggzRiXKatSJuQJmXBZyaSQOTuNvShUIkXxfk4uQlgzxoRQfEKaF_St8z0MBm9p8-mhtp0d9xSGhno0e9PZ4YO6lo4r9L3bdBBGa2ht3e_iKLRDTDHY0J0dV9Q4b2MAehpGD7tLctZCF_Dqu07J28P963yRLJ8fn-azZWLyXIxJhbXhRaHimaZFYGCgFLJUdQtKZUxKAOSqLXKWKVHxvMZKqLqpsGKQZyWIKbk55q6g0xtve_B77cDqxWypDzOWcZGXhdzyqFVHrfEuBI_tj4EzfUCr1_oPWn1Aq1mlI9ronR-9GJ_ZWvQ6GIuRYGMjslE3zv4j5QvF6Isn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw</title><source>Elsevier ScienceDirect Journals</source><creator>Uitterhaegen, E. ; Parinet, J. ; Labonne, L. ; Mérian, T. ; Ballas, S. ; Véronèse, T. ; Merah, O. ; Talou, T. ; Stevens, C.V. ; Chabert, F. ; Evon, Ph</creator><creatorcontrib>Uitterhaegen, E. ; Parinet, J. ; Labonne, L. ; Mérian, T. ; Ballas, S. ; Véronèse, T. ; Merah, O. ; Talou, T. ; Stevens, C.V. ; Chabert, F. ; Evon, Ph</creatorcontrib><description>In this study, coriander straw fiber was effectively incorporated as a reinforcing filler in polypropylene and biobased low-density polyethylene composite materials through twin-screw extrusion compounding and injection molding. Maleic anhydride-grafted copolymers were added as a coupling agent and effectively provided fiber/matrix compatibilization. With a significant reinforcing effect, resulting in a 50% increase in the flexural and tensile strength (from 19 to 28 MPa and from 12 to 17 MPa, respectively, for polypropylene composites) as compared to the native polymer, coriander straw allowed the production of 40% filled thermoplastic biocomposites with adequate mechanical properties comparable to those of commercial wood fibers, excellent durability in terms of UV and hygrothermal weathering and high potential for recycling. At the same time, such coriander biocomposites show a favorable cost structure, with 28% reduction of the granule cost as compared to wood fiber composites.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2018.07.038</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Biocomposite ; A. Natural fibers ; B. Mechanical properties ; Chemical engineering ; Chemical Sciences ; E. Recycling ; Material chemistry ; Polymers</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2018-10, Vol.113, p.254-263</ispartof><rights>2018 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7ebc1559835cfea0aca63869bfa992088aae19f540293714be739bd7e70a426a3</citedby><cites>FETCH-LOGICAL-c443t-7ebc1559835cfea0aca63869bfa992088aae19f540293714be739bd7e70a426a3</cites><orcidid>0000-0002-6939-0516 ; 0000-0002-8777-3000 ; 0000-0002-9863-150X ; 0000-0001-6309-4372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359835X18303087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02134658$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Uitterhaegen, E.</creatorcontrib><creatorcontrib>Parinet, J.</creatorcontrib><creatorcontrib>Labonne, L.</creatorcontrib><creatorcontrib>Mérian, T.</creatorcontrib><creatorcontrib>Ballas, S.</creatorcontrib><creatorcontrib>Véronèse, T.</creatorcontrib><creatorcontrib>Merah, O.</creatorcontrib><creatorcontrib>Talou, T.</creatorcontrib><creatorcontrib>Stevens, C.V.</creatorcontrib><creatorcontrib>Chabert, F.</creatorcontrib><creatorcontrib>Evon, Ph</creatorcontrib><title>Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw</title><title>Composites. Part A, Applied science and manufacturing</title><description>In this study, coriander straw fiber was effectively incorporated as a reinforcing filler in polypropylene and biobased low-density polyethylene composite materials through twin-screw extrusion compounding and injection molding. Maleic anhydride-grafted copolymers were added as a coupling agent and effectively provided fiber/matrix compatibilization. With a significant reinforcing effect, resulting in a 50% increase in the flexural and tensile strength (from 19 to 28 MPa and from 12 to 17 MPa, respectively, for polypropylene composites) as compared to the native polymer, coriander straw allowed the production of 40% filled thermoplastic biocomposites with adequate mechanical properties comparable to those of commercial wood fibers, excellent durability in terms of UV and hygrothermal weathering and high potential for recycling. At the same time, such coriander biocomposites show a favorable cost structure, with 28% reduction of the granule cost as compared to wood fiber composites.</description><subject>A. Biocomposite</subject><subject>A. Natural fibers</subject><subject>B. Mechanical properties</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>E. Recycling</subject><subject>Material chemistry</subject><subject>Polymers</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxYMoWKvfIR4Fd002-yc5lqJWKOhBwVuYzc7alN1NSdaWfntTKurR0wzDe29mfoRcc5Zyxsu7dWpcv3HBjhggzRiXKatSJuQJmXBZyaSQOTuNvShUIkXxfk4uQlgzxoRQfEKaF_St8z0MBm9p8-mhtp0d9xSGhno0e9PZ4YO6lo4r9L3bdBBGa2ht3e_iKLRDTDHY0J0dV9Q4b2MAehpGD7tLctZCF_Dqu07J28P963yRLJ8fn-azZWLyXIxJhbXhRaHimaZFYGCgFLJUdQtKZUxKAOSqLXKWKVHxvMZKqLqpsGKQZyWIKbk55q6g0xtve_B77cDqxWypDzOWcZGXhdzyqFVHrfEuBI_tj4EzfUCr1_oPWn1Aq1mlI9ronR-9GJ_ZWvQ6GIuRYGMjslE3zv4j5QvF6Isn</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Uitterhaegen, E.</creator><creator>Parinet, J.</creator><creator>Labonne, L.</creator><creator>Mérian, T.</creator><creator>Ballas, S.</creator><creator>Véronèse, T.</creator><creator>Merah, O.</creator><creator>Talou, T.</creator><creator>Stevens, C.V.</creator><creator>Chabert, F.</creator><creator>Evon, Ph</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6939-0516</orcidid><orcidid>https://orcid.org/0000-0002-8777-3000</orcidid><orcidid>https://orcid.org/0000-0002-9863-150X</orcidid><orcidid>https://orcid.org/0000-0001-6309-4372</orcidid></search><sort><creationdate>20181001</creationdate><title>Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw</title><author>Uitterhaegen, E. ; Parinet, J. ; Labonne, L. ; Mérian, T. ; Ballas, S. ; Véronèse, T. ; Merah, O. ; Talou, T. ; Stevens, C.V. ; Chabert, F. ; Evon, Ph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7ebc1559835cfea0aca63869bfa992088aae19f540293714be739bd7e70a426a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A. Biocomposite</topic><topic>A. Natural fibers</topic><topic>B. Mechanical properties</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>E. Recycling</topic><topic>Material chemistry</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uitterhaegen, E.</creatorcontrib><creatorcontrib>Parinet, J.</creatorcontrib><creatorcontrib>Labonne, L.</creatorcontrib><creatorcontrib>Mérian, T.</creatorcontrib><creatorcontrib>Ballas, S.</creatorcontrib><creatorcontrib>Véronèse, T.</creatorcontrib><creatorcontrib>Merah, O.</creatorcontrib><creatorcontrib>Talou, T.</creatorcontrib><creatorcontrib>Stevens, C.V.</creatorcontrib><creatorcontrib>Chabert, F.</creatorcontrib><creatorcontrib>Evon, Ph</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uitterhaegen, E.</au><au>Parinet, J.</au><au>Labonne, L.</au><au>Mérian, T.</au><au>Ballas, S.</au><au>Véronèse, T.</au><au>Merah, O.</au><au>Talou, T.</au><au>Stevens, C.V.</au><au>Chabert, F.</au><au>Evon, Ph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>113</volume><spage>254</spage><epage>263</epage><pages>254-263</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>In this study, coriander straw fiber was effectively incorporated as a reinforcing filler in polypropylene and biobased low-density polyethylene composite materials through twin-screw extrusion compounding and injection molding. Maleic anhydride-grafted copolymers were added as a coupling agent and effectively provided fiber/matrix compatibilization. With a significant reinforcing effect, resulting in a 50% increase in the flexural and tensile strength (from 19 to 28 MPa and from 12 to 17 MPa, respectively, for polypropylene composites) as compared to the native polymer, coriander straw allowed the production of 40% filled thermoplastic biocomposites with adequate mechanical properties comparable to those of commercial wood fibers, excellent durability in terms of UV and hygrothermal weathering and high potential for recycling. At the same time, such coriander biocomposites show a favorable cost structure, with 28% reduction of the granule cost as compared to wood fiber composites.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2018.07.038</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6939-0516</orcidid><orcidid>https://orcid.org/0000-0002-8777-3000</orcidid><orcidid>https://orcid.org/0000-0002-9863-150X</orcidid><orcidid>https://orcid.org/0000-0001-6309-4372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2018-10, Vol.113, p.254-263
issn 1359-835X
1878-5840
language eng
recordid cdi_hal_primary_oai_HAL_hal_02134658v1
source Elsevier ScienceDirect Journals
subjects A. Biocomposite
A. Natural fibers
B. Mechanical properties
Chemical engineering
Chemical Sciences
E. Recycling
Material chemistry
Polymers
title Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance,%20durability%20and%20recycling%20of%20thermoplastic%20biocomposites%20reinforced%20with%20coriander%20straw&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Uitterhaegen,%20E.&rft.date=2018-10-01&rft.volume=113&rft.spage=254&rft.epage=263&rft.pages=254-263&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2018.07.038&rft_dat=%3Celsevier_hal_p%3ES1359835X18303087%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359835X18303087&rfr_iscdi=true