Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production
Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2017-01, Vol.42 (2), p.1366-1374 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1374 |
---|---|
container_issue | 2 |
container_start_page | 1366 |
container_title | International journal of hydrogen energy |
container_volume | 42 |
creator | Aouali, F.Z. Becherif, M. Ramadan, H.S. Emziane, M. Khellaf, A. Mohammedi, K. |
description | Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors.
This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed.
•State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect. |
doi_str_mv | 10.1016/j.ijhydene.2016.03.101 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02130994v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319916307959</els_id><sourcerecordid>S0360319916307959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</originalsourceid><addsrcrecordid>eNqFUMFuEzEQtRCVCG1_ofKVw4bxetde34gqaJEi9QJny2uPE0eOHbxL1Pw9XgW49jQz7817mnmEPDBYM2Di82EdDvuLw4Trts5r4Av-jqzYIFXDu0G-JyvgAhrOlPpAPk7TAYBJ6NSK_NokEy9zsCbSY3YYY0g7apKj-HrCEo6Y5kqdTQzOzCEnmj09lTzXDl_t3qQd0iMex2ISUoxo55LjZcJCfS603lXyDtMicb_tYnBHbryJE97_rbfk57evPx6fm-3L0_fHzbaxfOBzw63qvWLgPYIYUfaAKLpWDUL0pq8sSCe8Y6YfJR9Btr4dRtm5wTqJXrT8lny6-u5N1Kf6iSkXnU3Qz5utXjBoGQelujOru-K6a0uepoL-v4CBXkLWB_0vZL2ErIEveBV-uQqxfnIOWPRkAyaLLpQahXY5vGXxBwxNi_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Aouali, F.Z. ; Becherif, M. ; Ramadan, H.S. ; Emziane, M. ; Khellaf, A. ; Mohammedi, K.</creator><creatorcontrib>Aouali, F.Z. ; Becherif, M. ; Ramadan, H.S. ; Emziane, M. ; Khellaf, A. ; Mohammedi, K.</creatorcontrib><description>Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors.
This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed.
•State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2016.03.101</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Electric power ; Engineering Sciences ; Fluid mechanics ; Hydrogen production ; Mechanics ; Physics ; Proton exchange membrane ; Thermics ; Water electrolysis</subject><ispartof>International journal of hydrogen energy, 2017-01, Vol.42 (2), p.1366-1374</ispartof><rights>2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</citedby><cites>FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2016.03.101$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02130994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouali, F.Z.</creatorcontrib><creatorcontrib>Becherif, M.</creatorcontrib><creatorcontrib>Ramadan, H.S.</creatorcontrib><creatorcontrib>Emziane, M.</creatorcontrib><creatorcontrib>Khellaf, A.</creatorcontrib><creatorcontrib>Mohammedi, K.</creatorcontrib><title>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</title><title>International journal of hydrogen energy</title><description>Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors.
This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed.
•State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.</description><subject>Automatic</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Hydrogen production</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Proton exchange membrane</subject><subject>Thermics</subject><subject>Water electrolysis</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMFuEzEQtRCVCG1_ofKVw4bxetde34gqaJEi9QJny2uPE0eOHbxL1Pw9XgW49jQz7817mnmEPDBYM2Di82EdDvuLw4Trts5r4Av-jqzYIFXDu0G-JyvgAhrOlPpAPk7TAYBJ6NSK_NokEy9zsCbSY3YYY0g7apKj-HrCEo6Y5kqdTQzOzCEnmj09lTzXDl_t3qQd0iMex2ISUoxo55LjZcJCfS603lXyDtMicb_tYnBHbryJE97_rbfk57evPx6fm-3L0_fHzbaxfOBzw63qvWLgPYIYUfaAKLpWDUL0pq8sSCe8Y6YfJR9Btr4dRtm5wTqJXrT8lny6-u5N1Kf6iSkXnU3Qz5utXjBoGQelujOru-K6a0uepoL-v4CBXkLWB_0vZL2ErIEveBV-uQqxfnIOWPRkAyaLLpQahXY5vGXxBwxNi_o</recordid><startdate>20170112</startdate><enddate>20170112</enddate><creator>Aouali, F.Z.</creator><creator>Becherif, M.</creator><creator>Ramadan, H.S.</creator><creator>Emziane, M.</creator><creator>Khellaf, A.</creator><creator>Mohammedi, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20170112</creationdate><title>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</title><author>Aouali, F.Z. ; Becherif, M. ; Ramadan, H.S. ; Emziane, M. ; Khellaf, A. ; Mohammedi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automatic</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Hydrogen production</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Proton exchange membrane</topic><topic>Thermics</topic><topic>Water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouali, F.Z.</creatorcontrib><creatorcontrib>Becherif, M.</creatorcontrib><creatorcontrib>Ramadan, H.S.</creatorcontrib><creatorcontrib>Emziane, M.</creatorcontrib><creatorcontrib>Khellaf, A.</creatorcontrib><creatorcontrib>Mohammedi, K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouali, F.Z.</au><au>Becherif, M.</au><au>Ramadan, H.S.</au><au>Emziane, M.</au><au>Khellaf, A.</au><au>Mohammedi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2017-01-12</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>1366</spage><epage>1374</epage><pages>1366-1374</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors.
This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed.
•State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2016.03.101</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2017-01, Vol.42 (2), p.1366-1374 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02130994v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Automatic Electric power Engineering Sciences Fluid mechanics Hydrogen production Mechanics Physics Proton exchange membrane Thermics Water electrolysis |
title | Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modelling%20and%20experimental%20validation%20of%20proton%20exchange%20membrane%20electrolyser%20for%20hydrogen%20production&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Aouali,%20F.Z.&rft.date=2017-01-12&rft.volume=42&rft.issue=2&rft.spage=1366&rft.epage=1374&rft.pages=1366-1374&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2016.03.101&rft_dat=%3Celsevier_hal_p%3ES0360319916307959%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319916307959&rfr_iscdi=true |