Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production

Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2017-01, Vol.42 (2), p.1366-1374
Hauptverfasser: Aouali, F.Z., Becherif, M., Ramadan, H.S., Emziane, M., Khellaf, A., Mohammedi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1374
container_issue 2
container_start_page 1366
container_title International journal of hydrogen energy
container_volume 42
creator Aouali, F.Z.
Becherif, M.
Ramadan, H.S.
Emziane, M.
Khellaf, A.
Mohammedi, K.
description Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors. This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed. •State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.
doi_str_mv 10.1016/j.ijhydene.2016.03.101
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02130994v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319916307959</els_id><sourcerecordid>S0360319916307959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</originalsourceid><addsrcrecordid>eNqFUMFuEzEQtRCVCG1_ofKVw4bxetde34gqaJEi9QJny2uPE0eOHbxL1Pw9XgW49jQz7817mnmEPDBYM2Di82EdDvuLw4Trts5r4Av-jqzYIFXDu0G-JyvgAhrOlPpAPk7TAYBJ6NSK_NokEy9zsCbSY3YYY0g7apKj-HrCEo6Y5kqdTQzOzCEnmj09lTzXDl_t3qQd0iMex2ISUoxo55LjZcJCfS603lXyDtMicb_tYnBHbryJE97_rbfk57evPx6fm-3L0_fHzbaxfOBzw63qvWLgPYIYUfaAKLpWDUL0pq8sSCe8Y6YfJR9Btr4dRtm5wTqJXrT8lny6-u5N1Kf6iSkXnU3Qz5utXjBoGQelujOru-K6a0uepoL-v4CBXkLWB_0vZL2ErIEveBV-uQqxfnIOWPRkAyaLLpQahXY5vGXxBwxNi_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Aouali, F.Z. ; Becherif, M. ; Ramadan, H.S. ; Emziane, M. ; Khellaf, A. ; Mohammedi, K.</creator><creatorcontrib>Aouali, F.Z. ; Becherif, M. ; Ramadan, H.S. ; Emziane, M. ; Khellaf, A. ; Mohammedi, K.</creatorcontrib><description>Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors. This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed. •State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2016.03.101</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Electric power ; Engineering Sciences ; Fluid mechanics ; Hydrogen production ; Mechanics ; Physics ; Proton exchange membrane ; Thermics ; Water electrolysis</subject><ispartof>International journal of hydrogen energy, 2017-01, Vol.42 (2), p.1366-1374</ispartof><rights>2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</citedby><cites>FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2016.03.101$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02130994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouali, F.Z.</creatorcontrib><creatorcontrib>Becherif, M.</creatorcontrib><creatorcontrib>Ramadan, H.S.</creatorcontrib><creatorcontrib>Emziane, M.</creatorcontrib><creatorcontrib>Khellaf, A.</creatorcontrib><creatorcontrib>Mohammedi, K.</creatorcontrib><title>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</title><title>International journal of hydrogen energy</title><description>Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors. This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed. •State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.</description><subject>Automatic</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Hydrogen production</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Proton exchange membrane</subject><subject>Thermics</subject><subject>Water electrolysis</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMFuEzEQtRCVCG1_ofKVw4bxetde34gqaJEi9QJny2uPE0eOHbxL1Pw9XgW49jQz7817mnmEPDBYM2Di82EdDvuLw4Trts5r4Av-jqzYIFXDu0G-JyvgAhrOlPpAPk7TAYBJ6NSK_NokEy9zsCbSY3YYY0g7apKj-HrCEo6Y5kqdTQzOzCEnmj09lTzXDl_t3qQd0iMex2ISUoxo55LjZcJCfS603lXyDtMicb_tYnBHbryJE97_rbfk57evPx6fm-3L0_fHzbaxfOBzw63qvWLgPYIYUfaAKLpWDUL0pq8sSCe8Y6YfJR9Btr4dRtm5wTqJXrT8lny6-u5N1Kf6iSkXnU3Qz5utXjBoGQelujOru-K6a0uepoL-v4CBXkLWB_0vZL2ErIEveBV-uQqxfnIOWPRkAyaLLpQahXY5vGXxBwxNi_o</recordid><startdate>20170112</startdate><enddate>20170112</enddate><creator>Aouali, F.Z.</creator><creator>Becherif, M.</creator><creator>Ramadan, H.S.</creator><creator>Emziane, M.</creator><creator>Khellaf, A.</creator><creator>Mohammedi, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20170112</creationdate><title>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</title><author>Aouali, F.Z. ; Becherif, M. ; Ramadan, H.S. ; Emziane, M. ; Khellaf, A. ; Mohammedi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3c95f910ffe06be750ee64298665a53c907d6fd1a5b73b072f28b74d8cd7ef623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automatic</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Hydrogen production</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Proton exchange membrane</topic><topic>Thermics</topic><topic>Water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouali, F.Z.</creatorcontrib><creatorcontrib>Becherif, M.</creatorcontrib><creatorcontrib>Ramadan, H.S.</creatorcontrib><creatorcontrib>Emziane, M.</creatorcontrib><creatorcontrib>Khellaf, A.</creatorcontrib><creatorcontrib>Mohammedi, K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouali, F.Z.</au><au>Becherif, M.</au><au>Ramadan, H.S.</au><au>Emziane, M.</au><au>Khellaf, A.</au><au>Mohammedi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2017-01-12</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>1366</spage><epage>1374</epage><pages>1366-1374</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors. This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink™, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed. •State of the art of PEM-ELS modelling and experimentation.•Novel PEM-ELS graphical model design based on electrochemical, thermodynamical and thermal equations.•Experimental validation of the PEM-ELS using small-scale laboratory electrolyser.•Analytical-experimental comparison for PEM-ELS dynamic behaviour considering temperature effect.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2016.03.101</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2017-01, Vol.42 (2), p.1366-1374
issn 0360-3199
1879-3487
language eng
recordid cdi_hal_primary_oai_HAL_hal_02130994v1
source Elsevier ScienceDirect Journals Complete
subjects Automatic
Electric power
Engineering Sciences
Fluid mechanics
Hydrogen production
Mechanics
Physics
Proton exchange membrane
Thermics
Water electrolysis
title Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20modelling%20and%20experimental%20validation%20of%20proton%20exchange%20membrane%20electrolyser%20for%20hydrogen%20production&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Aouali,%20F.Z.&rft.date=2017-01-12&rft.volume=42&rft.issue=2&rft.spage=1366&rft.epage=1374&rft.pages=1366-1374&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2016.03.101&rft_dat=%3Celsevier_hal_p%3ES0360319916307959%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319916307959&rfr_iscdi=true