A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts
Rule‐based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule‐based methods often does not match histological data in othe...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in biomedical engineering 2019-04, Vol.35 (4), p.e3185-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e3185 |
container_title | International journal for numerical methods in biomedical engineering |
container_volume | 35 |
creator | Doste, Ruben Soto‐Iglesias, David Bernardino, Gabriel Alcaine, Alejandro Sebastian, Rafael Giffard‐Roisin, Sophie Sermesant, Maxime Berruezo, Antonio Sanchez‐Quintana, Damian Camara, Oscar |
description | Rule‐based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule‐based methods often does not match histological data in other areas of the heart such as the right ventricle, having a negative impact in cardiac simulations beyond the left ventricle. In this work, we present a rule‐based method where fiber orientation is separately modeled in each ventricle following observations from histology. This allows to create detailed fiber orientation in specific regions such as the endocardium of the right ventricle, the interventricular septum, and the outflow tracts. We also carried out electrophysiological simulations involving these structures and with different fiber configurations. In particular, we built a modeling pipeline for creating patient‐specific volumetric meshes of biventricular geometries, including the outflow tracts, and subsequently simulate the electrical wavefront propagation in outflow tract ventricular arrhythmias with different origins for the ectopic focus. The resulting simulations with the proposed rule‐based method showed a very good agreement with clinical parameters such as the 10 ms isochrone ratio in a cohort of nine patients suffering from this type of arrhythmia. The developed modeling pipeline confirms its potential for an in silico identification of the site of origin in outflow tract ventricular arrhythmias before clinical intervention.
We have developed a rule‐based method (RBM) that includes specific fiber orientation in different cardiac regions such as the right ventricle endocardium, the interventricular septum, and the outflow tracts, following observations from histological data. This adapted RBM allows running in silico simulations aimed to model pathologies where these regions are relevant such as outflow tract ventricular arrhythmias. The resulting simulations with the proposed RBM showed a very good agreement with clinical parameters. |
doi_str_mv | 10.1002/cnm.3185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02128531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183641046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4595-5e8aa19229e09446101a85e577d9cee753011bb24c02ff771ef171559dfd5d773</originalsourceid><addsrcrecordid>eNp1kdGO1CAUhhujcTfrJj6BIfFGL7pyaCnlcjJR12TUG70mlJ46bGhZge5k7nwEn9EnkW7XMTGRhHA4fOfnwF8Uz4FeAaXsjZnGqwpa_qg4Z7SmpZC1eHyKK3lWXMZ4Q_NgUkpRPS3OKioYcCHPi7ghYXb468fPTkfsyYhp73uSPBl9j46MR2906K12ZLAdBuKDxSnpZP1E7ETWQ0M6e5fTwZrZ6UC-oc9CmYzkYNOe-DkNzh9ICtqk-Kx4MmgX8fJhvSi-vnv7ZXtd7j6__7Dd7EpTc8lLjq3WIBmTSGVdN0BBtxy5EL00iIJXFKDrWG0oGwYhAAcQwLnsh573QlQXxetVd6-dug121OGovLbqerNTS44yYC2v4A4yCytr4mxUQIPB6HRPnzbLZPnnVNXku2WuebXW3Ab_fcaY1GijQef0hH6OikFbNTXQusnoy3_QGz-HKb9esUUyN86av4Im-BgDDqeugarFa5W9VovXGX3xIDh3I_Yn8I-zGShX4GAdHv8rpLafPt4L_gY7_7Io</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207217126</pqid></control><display><type>article</type><title>A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Recercat</source><creator>Doste, Ruben ; Soto‐Iglesias, David ; Bernardino, Gabriel ; Alcaine, Alejandro ; Sebastian, Rafael ; Giffard‐Roisin, Sophie ; Sermesant, Maxime ; Berruezo, Antonio ; Sanchez‐Quintana, Damian ; Camara, Oscar</creator><creatorcontrib>Doste, Ruben ; Soto‐Iglesias, David ; Bernardino, Gabriel ; Alcaine, Alejandro ; Sebastian, Rafael ; Giffard‐Roisin, Sophie ; Sermesant, Maxime ; Berruezo, Antonio ; Sanchez‐Quintana, Damian ; Camara, Oscar</creatorcontrib><description>Rule‐based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule‐based methods often does not match histological data in other areas of the heart such as the right ventricle, having a negative impact in cardiac simulations beyond the left ventricle. In this work, we present a rule‐based method where fiber orientation is separately modeled in each ventricle following observations from histology. This allows to create detailed fiber orientation in specific regions such as the endocardium of the right ventricle, the interventricular septum, and the outflow tracts. We also carried out electrophysiological simulations involving these structures and with different fiber configurations. In particular, we built a modeling pipeline for creating patient‐specific volumetric meshes of biventricular geometries, including the outflow tracts, and subsequently simulate the electrical wavefront propagation in outflow tract ventricular arrhythmias with different origins for the ectopic focus. The resulting simulations with the proposed rule‐based method showed a very good agreement with clinical parameters such as the 10 ms isochrone ratio in a cohort of nine patients suffering from this type of arrhythmia. The developed modeling pipeline confirms its potential for an in silico identification of the site of origin in outflow tract ventricular arrhythmias before clinical intervention.
We have developed a rule‐based method (RBM) that includes specific fiber orientation in different cardiac regions such as the right ventricle endocardium, the interventricular septum, and the outflow tracts, following observations from histological data. This adapted RBM allows running in silico simulations aimed to model pathologies where these regions are relevant such as outflow tract ventricular arrhythmias. The resulting simulations with the proposed RBM showed a very good agreement with clinical parameters.</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3185</identifier><identifier>PMID: 30721579</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Arrhythmia ; Artificial Intelligence ; Cardiac arrhythmia ; Computer Science ; Computer Simulation ; Electrophysiological Phenomena ; Electrophysiological simulations ; Fiber orientation ; Heart ; Heart Ventricles - anatomy & histology ; Heart Ventricles - diagnostic imaging ; Histology ; Humans ; Magnetic Resonance Imaging ; Medical Imaging ; Methods ; Modeling and Simulation ; Modelling ; Models, Cardiovascular ; Myocardium - metabolism ; Outflow tract ; Outflow tract ventricular arrhythmia ; Rule-based method ; Septum ; Ventricle ; Wave propagation</subject><ispartof>International journal for numerical methods in biomedical engineering, 2019-04, Vol.35 (4), p.e3185-n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>This is the peer reviewed version of the following article: Doste R, Soto-Iglesias D, Bernardino G, Alcaine A, Sebastian R, Giffard-Roisin S, Sermesant M, Berruezo A,Sanchez-Quintana D,Camara O. A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. Title Abbreviation: Int J Numer Method Biomed Eng. 2019 Feb 05;35(4):e3185, which has been published in final form at https://doi.org/10.1002/cnm.3185 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. info:eu-repo/semantics/embargoedAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4595-5e8aa19229e09446101a85e577d9cee753011bb24c02ff771ef171559dfd5d773</citedby><cites>FETCH-LOGICAL-c4595-5e8aa19229e09446101a85e577d9cee753011bb24c02ff771ef171559dfd5d773</cites><orcidid>0000-0001-8741-2566 ; 0000-0002-0543-2131 ; 0000-0002-5125-6132 ; 0000-0002-6256-8350 ; 0000-0001-6746-5740 ; 0000-0002-6714-5322 ; 0000-0003-4187-4970 ; 0000-0002-0166-2837 ; 0000-0001-5606-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3185$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3185$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,26951,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30721579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-02128531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Doste, Ruben</creatorcontrib><creatorcontrib>Soto‐Iglesias, David</creatorcontrib><creatorcontrib>Bernardino, Gabriel</creatorcontrib><creatorcontrib>Alcaine, Alejandro</creatorcontrib><creatorcontrib>Sebastian, Rafael</creatorcontrib><creatorcontrib>Giffard‐Roisin, Sophie</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Berruezo, Antonio</creatorcontrib><creatorcontrib>Sanchez‐Quintana, Damian</creatorcontrib><creatorcontrib>Camara, Oscar</creatorcontrib><title>A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>Rule‐based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule‐based methods often does not match histological data in other areas of the heart such as the right ventricle, having a negative impact in cardiac simulations beyond the left ventricle. In this work, we present a rule‐based method where fiber orientation is separately modeled in each ventricle following observations from histology. This allows to create detailed fiber orientation in specific regions such as the endocardium of the right ventricle, the interventricular septum, and the outflow tracts. We also carried out electrophysiological simulations involving these structures and with different fiber configurations. In particular, we built a modeling pipeline for creating patient‐specific volumetric meshes of biventricular geometries, including the outflow tracts, and subsequently simulate the electrical wavefront propagation in outflow tract ventricular arrhythmias with different origins for the ectopic focus. The resulting simulations with the proposed rule‐based method showed a very good agreement with clinical parameters such as the 10 ms isochrone ratio in a cohort of nine patients suffering from this type of arrhythmia. The developed modeling pipeline confirms its potential for an in silico identification of the site of origin in outflow tract ventricular arrhythmias before clinical intervention.
We have developed a rule‐based method (RBM) that includes specific fiber orientation in different cardiac regions such as the right ventricle endocardium, the interventricular septum, and the outflow tracts, following observations from histological data. This adapted RBM allows running in silico simulations aimed to model pathologies where these regions are relevant such as outflow tract ventricular arrhythmias. The resulting simulations with the proposed RBM showed a very good agreement with clinical parameters.</description><subject>Arrhythmia</subject><subject>Artificial Intelligence</subject><subject>Cardiac arrhythmia</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Electrophysiological Phenomena</subject><subject>Electrophysiological simulations</subject><subject>Fiber orientation</subject><subject>Heart</subject><subject>Heart Ventricles - anatomy & histology</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Histology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical Imaging</subject><subject>Methods</subject><subject>Modeling and Simulation</subject><subject>Modelling</subject><subject>Models, Cardiovascular</subject><subject>Myocardium - metabolism</subject><subject>Outflow tract</subject><subject>Outflow tract ventricular arrhythmia</subject><subject>Rule-based method</subject><subject>Septum</subject><subject>Ventricle</subject><subject>Wave propagation</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNp1kdGO1CAUhhujcTfrJj6BIfFGL7pyaCnlcjJR12TUG70mlJ46bGhZge5k7nwEn9EnkW7XMTGRhHA4fOfnwF8Uz4FeAaXsjZnGqwpa_qg4Z7SmpZC1eHyKK3lWXMZ4Q_NgUkpRPS3OKioYcCHPi7ghYXb468fPTkfsyYhp73uSPBl9j46MR2906K12ZLAdBuKDxSnpZP1E7ETWQ0M6e5fTwZrZ6UC-oc9CmYzkYNOe-DkNzh9ICtqk-Kx4MmgX8fJhvSi-vnv7ZXtd7j6__7Dd7EpTc8lLjq3WIBmTSGVdN0BBtxy5EL00iIJXFKDrWG0oGwYhAAcQwLnsh573QlQXxetVd6-dug121OGovLbqerNTS44yYC2v4A4yCytr4mxUQIPB6HRPnzbLZPnnVNXku2WuebXW3Ab_fcaY1GijQef0hH6OikFbNTXQusnoy3_QGz-HKb9esUUyN86av4Im-BgDDqeugarFa5W9VovXGX3xIDh3I_Yn8I-zGShX4GAdHv8rpLafPt4L_gY7_7Io</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Doste, Ruben</creator><creator>Soto‐Iglesias, David</creator><creator>Bernardino, Gabriel</creator><creator>Alcaine, Alejandro</creator><creator>Sebastian, Rafael</creator><creator>Giffard‐Roisin, Sophie</creator><creator>Sermesant, Maxime</creator><creator>Berruezo, Antonio</creator><creator>Sanchez‐Quintana, Damian</creator><creator>Camara, Oscar</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>John Wiley and Sons</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>XX2</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8741-2566</orcidid><orcidid>https://orcid.org/0000-0002-0543-2131</orcidid><orcidid>https://orcid.org/0000-0002-5125-6132</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><orcidid>https://orcid.org/0000-0001-6746-5740</orcidid><orcidid>https://orcid.org/0000-0002-6714-5322</orcidid><orcidid>https://orcid.org/0000-0003-4187-4970</orcidid><orcidid>https://orcid.org/0000-0002-0166-2837</orcidid><orcidid>https://orcid.org/0000-0001-5606-145X</orcidid></search><sort><creationdate>201904</creationdate><title>A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts</title><author>Doste, Ruben ; Soto‐Iglesias, David ; Bernardino, Gabriel ; Alcaine, Alejandro ; Sebastian, Rafael ; Giffard‐Roisin, Sophie ; Sermesant, Maxime ; Berruezo, Antonio ; Sanchez‐Quintana, Damian ; Camara, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4595-5e8aa19229e09446101a85e577d9cee753011bb24c02ff771ef171559dfd5d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrhythmia</topic><topic>Artificial Intelligence</topic><topic>Cardiac arrhythmia</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Electrophysiological Phenomena</topic><topic>Electrophysiological simulations</topic><topic>Fiber orientation</topic><topic>Heart</topic><topic>Heart Ventricles - anatomy & histology</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Histology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical Imaging</topic><topic>Methods</topic><topic>Modeling and Simulation</topic><topic>Modelling</topic><topic>Models, Cardiovascular</topic><topic>Myocardium - metabolism</topic><topic>Outflow tract</topic><topic>Outflow tract ventricular arrhythmia</topic><topic>Rule-based method</topic><topic>Septum</topic><topic>Ventricle</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doste, Ruben</creatorcontrib><creatorcontrib>Soto‐Iglesias, David</creatorcontrib><creatorcontrib>Bernardino, Gabriel</creatorcontrib><creatorcontrib>Alcaine, Alejandro</creatorcontrib><creatorcontrib>Sebastian, Rafael</creatorcontrib><creatorcontrib>Giffard‐Roisin, Sophie</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Berruezo, Antonio</creatorcontrib><creatorcontrib>Sanchez‐Quintana, Damian</creatorcontrib><creatorcontrib>Camara, Oscar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doste, Ruben</au><au>Soto‐Iglesias, David</au><au>Bernardino, Gabriel</au><au>Alcaine, Alejandro</au><au>Sebastian, Rafael</au><au>Giffard‐Roisin, Sophie</au><au>Sermesant, Maxime</au><au>Berruezo, Antonio</au><au>Sanchez‐Quintana, Damian</au><au>Camara, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2019-04</date><risdate>2019</risdate><volume>35</volume><issue>4</issue><spage>e3185</spage><epage>n/a</epage><pages>e3185-n/a</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>Rule‐based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule‐based methods often does not match histological data in other areas of the heart such as the right ventricle, having a negative impact in cardiac simulations beyond the left ventricle. In this work, we present a rule‐based method where fiber orientation is separately modeled in each ventricle following observations from histology. This allows to create detailed fiber orientation in specific regions such as the endocardium of the right ventricle, the interventricular septum, and the outflow tracts. We also carried out electrophysiological simulations involving these structures and with different fiber configurations. In particular, we built a modeling pipeline for creating patient‐specific volumetric meshes of biventricular geometries, including the outflow tracts, and subsequently simulate the electrical wavefront propagation in outflow tract ventricular arrhythmias with different origins for the ectopic focus. The resulting simulations with the proposed rule‐based method showed a very good agreement with clinical parameters such as the 10 ms isochrone ratio in a cohort of nine patients suffering from this type of arrhythmia. The developed modeling pipeline confirms its potential for an in silico identification of the site of origin in outflow tract ventricular arrhythmias before clinical intervention.
We have developed a rule‐based method (RBM) that includes specific fiber orientation in different cardiac regions such as the right ventricle endocardium, the interventricular septum, and the outflow tracts, following observations from histological data. This adapted RBM allows running in silico simulations aimed to model pathologies where these regions are relevant such as outflow tract ventricular arrhythmias. The resulting simulations with the proposed RBM showed a very good agreement with clinical parameters.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30721579</pmid><doi>10.1002/cnm.3185</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8741-2566</orcidid><orcidid>https://orcid.org/0000-0002-0543-2131</orcidid><orcidid>https://orcid.org/0000-0002-5125-6132</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><orcidid>https://orcid.org/0000-0001-6746-5740</orcidid><orcidid>https://orcid.org/0000-0002-6714-5322</orcidid><orcidid>https://orcid.org/0000-0003-4187-4970</orcidid><orcidid>https://orcid.org/0000-0002-0166-2837</orcidid><orcidid>https://orcid.org/0000-0001-5606-145X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-7939 |
ispartof | International journal for numerical methods in biomedical engineering, 2019-04, Vol.35 (4), p.e3185-n/a |
issn | 2040-7939 2040-7947 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02128531v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Recercat |
subjects | Arrhythmia Artificial Intelligence Cardiac arrhythmia Computer Science Computer Simulation Electrophysiological Phenomena Electrophysiological simulations Fiber orientation Heart Heart Ventricles - anatomy & histology Heart Ventricles - diagnostic imaging Histology Humans Magnetic Resonance Imaging Medical Imaging Methods Modeling and Simulation Modelling Models, Cardiovascular Myocardium - metabolism Outflow tract Outflow tract ventricular arrhythmia Rule-based method Septum Ventricle Wave propagation |
title | A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rule%E2%80%90based%20method%20to%20model%20myocardial%20fiber%20orientation%20in%20cardiac%20biventricular%20geometries%20with%20outflow%20tracts&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Doste,%20Ruben&rft.date=2019-04&rft.volume=35&rft.issue=4&rft.spage=e3185&rft.epage=n/a&rft.pages=e3185-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3185&rft_dat=%3Cproquest_hal_p%3E2183641046%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207217126&rft_id=info:pmid/30721579&rfr_iscdi=true |