Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea

Vertical velocities can be estimated indirectly from in situ observations by theoretical frameworks like the ω‐equation. Direct measures of vertical exchanges are challenging due to their typically ephemeral spatiotemporal scales. In this study we address this problem with an adaptive sampling strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2019-06, Vol.124 (6), p.3561-3574
Hauptverfasser: Rousselet, L., Doglioli, A. M., Verneil, A., Pietri, A., Della Penna, A., Berline, L., Marrec, P., Grégori, G., Thyssen, M., Carlotti, F., Barrillon, S., Simon‐Bot, F., Bonal, M., d'Ovidio, F., Petrenko, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3574
container_issue 6
container_start_page 3561
container_title Journal of geophysical research. Oceans
container_volume 124
creator Rousselet, L.
Doglioli, A. M.
Verneil, A.
Pietri, A.
Della Penna, A.
Berline, L.
Marrec, P.
Grégori, G.
Thyssen, M.
Carlotti, F.
Barrillon, S.
Simon‐Bot, F.
Bonal, M.
d'Ovidio, F.
Petrenko, A.
description Vertical velocities can be estimated indirectly from in situ observations by theoretical frameworks like the ω‐equation. Direct measures of vertical exchanges are challenging due to their typically ephemeral spatiotemporal scales. In this study we address this problem with an adaptive sampling strategy coupling various biophysical instruments. We analyze the 3‐D organization of a cyclonic mesoscale structure finely sampled during the Observing Submesoscale Coupling At High Resolution cruise in the Ligurian Sea during fall 2015. The observations, acquired with a moving vessel profiler, highlight a subsurface low‐salinity layer (≃50 m), as well as rising isopycnals, generated by geostrophic cyclonic circulation, in the structure's center. Reconstructed 3‐D fields of density and horizontal velocities are used to estimate the vertical velocity field down to 250 m by applying the adiabatic QG ω‐equation, for the first time in this region. The vertical motions are characterized by multipolar patterns of downward and upward velocities on the edges of the structure and significantly smaller vertical velocities in its center. Both the 3‐D distribution of particles (size ≥100 μm), measured with a laser optical plankton counter, and the Synechococcus and Prochlorococcus abundances (cell per cubic meter) measured by flow cytometry are consistent with the 3‐D velocity field. In particular, a secondary vertical recirculation is identified that upwells particles (from 250 to 100 m) along isohalines to the structure's center. Besides demonstrating the effect of vertical patterns on biogeochemical distributions, this case study suggests to use particle matter as a tracer to assess physical dynamics. Key Points An adaptive sampling strategy allows for fine‐scale observations of biophysical vertical processes inside a cyclonic mesoscale structure Multipolar patterns of intense downward and upward velocities (from adiabatic QG omega‐equation) are identified on the edges of the structure Particle matter appears as a valid tracer of vertical velocities
doi_str_mv 10.1029/2018JC014392
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02124795v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265573547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4024-e8847bfe5bfd3f317c85d7d05e7c68eb9efdc1c2d2c497f54467d83669ff77073</originalsourceid><addsrcrecordid>eNp90U1LAzEQBuBFFCzqzR8Q8CRYzedmc6yL9YOKoNVrSLMTG9luarKr7L-3a0U8OZcZkoeXgcmyY4LPCabqgmJS3JWYcKboTjaiJFdjRRXZ_Z2l2M-OUnrDmypIwbkaZf0LxNZbU6P70PrQJGSaCs2X4CO6cg5sm1BokEGXPrxCsEtYfet5NBYi8sNX2ds6NN6ipzZ2tu0ioKlvoO7RwyJB_IBqcO0S0My_dtGbBj2BOcz2nKkTHP30g-x5ejUvb8azh-vbcjIbG44pH0NRcLlwIBauYo4RaQtRyQoLkDYvYKHAVZZYWlHLlXSC81xWBctz5ZyUWLKD7HSbuzS1Xke_MrHXwXh9M5np4Q1TQrlU4oNu7MnWrmN47yC1-i10sdmspynNhZBM8CHxbKtsDClFcL-xBOvhFvrvLTacbfmnr6H_1-q768eSMk45-wKMsIl5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265573547</pqid></control><display><type>article</type><title>Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Rousselet, L. ; Doglioli, A. M. ; Verneil, A. ; Pietri, A. ; Della Penna, A. ; Berline, L. ; Marrec, P. ; Grégori, G. ; Thyssen, M. ; Carlotti, F. ; Barrillon, S. ; Simon‐Bot, F. ; Bonal, M. ; d'Ovidio, F. ; Petrenko, A.</creator><creatorcontrib>Rousselet, L. ; Doglioli, A. M. ; Verneil, A. ; Pietri, A. ; Della Penna, A. ; Berline, L. ; Marrec, P. ; Grégori, G. ; Thyssen, M. ; Carlotti, F. ; Barrillon, S. ; Simon‐Bot, F. ; Bonal, M. ; d'Ovidio, F. ; Petrenko, A.</creatorcontrib><description>Vertical velocities can be estimated indirectly from in situ observations by theoretical frameworks like the ω‐equation. Direct measures of vertical exchanges are challenging due to their typically ephemeral spatiotemporal scales. In this study we address this problem with an adaptive sampling strategy coupling various biophysical instruments. We analyze the 3‐D organization of a cyclonic mesoscale structure finely sampled during the Observing Submesoscale Coupling At High Resolution cruise in the Ligurian Sea during fall 2015. The observations, acquired with a moving vessel profiler, highlight a subsurface low‐salinity layer (≃50 m), as well as rising isopycnals, generated by geostrophic cyclonic circulation, in the structure's center. Reconstructed 3‐D fields of density and horizontal velocities are used to estimate the vertical velocity field down to 250 m by applying the adiabatic QG ω‐equation, for the first time in this region. The vertical motions are characterized by multipolar patterns of downward and upward velocities on the edges of the structure and significantly smaller vertical velocities in its center. Both the 3‐D distribution of particles (size ≥100 μm), measured with a laser optical plankton counter, and the Synechococcus and Prochlorococcus abundances (cell per cubic meter) measured by flow cytometry are consistent with the 3‐D velocity field. In particular, a secondary vertical recirculation is identified that upwells particles (from 250 to 100 m) along isohalines to the structure's center. Besides demonstrating the effect of vertical patterns on biogeochemical distributions, this case study suggests to use particle matter as a tracer to assess physical dynamics. Key Points An adaptive sampling strategy allows for fine‐scale observations of biophysical vertical processes inside a cyclonic mesoscale structure Multipolar patterns of intense downward and upward velocities (from adiabatic QG omega‐equation) are identified on the edges of the structure Particle matter appears as a valid tracer of vertical velocities</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2018JC014392</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Adaptive control ; Adaptive sampling ; Adiabatic ; Biogeochemistry ; Coupling ; Cyclonic circulation ; Flow cytometry ; Geophysics ; high‐resolution reconstructions of 3‐D fields ; Instruments ; Isohalines ; Isopycnals ; Lasers ; Ocean, Atmosphere ; Organizations ; particle distribution as a tracer for vertical advection ; Plankton ; Sciences of the Universe ; Tracers ; Velocity ; Velocity distribution ; Vertical velocities ; vertical velocities estimated with ω‐equation</subject><ispartof>Journal of geophysical research. Oceans, 2019-06, Vol.124 (6), p.3561-3574</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4024-e8847bfe5bfd3f317c85d7d05e7c68eb9efdc1c2d2c497f54467d83669ff77073</citedby><cites>FETCH-LOGICAL-a4024-e8847bfe5bfd3f317c85d7d05e7c68eb9efdc1c2d2c497f54467d83669ff77073</cites><orcidid>0000-0003-1309-9954 ; 0000-0002-5831-7399 ; 0000-0002-2077-3049 ; 0000-0001-5016-3658 ; 0000-0002-8344-7953 ; 0000-0002-7811-4150 ; 0000-0003-1111-9640 ; 0000-0002-7579-3610 ; 0000-0001-9517-1782 ; 0000-0003-1645-9468 ; 0000-0002-7075-1673 ; 0000-0002-3380-8108 ; 0000-0002-2519-9285 ; 0000-0002-9664-7778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JC014392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JC014392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02124795$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rousselet, L.</creatorcontrib><creatorcontrib>Doglioli, A. M.</creatorcontrib><creatorcontrib>Verneil, A.</creatorcontrib><creatorcontrib>Pietri, A.</creatorcontrib><creatorcontrib>Della Penna, A.</creatorcontrib><creatorcontrib>Berline, L.</creatorcontrib><creatorcontrib>Marrec, P.</creatorcontrib><creatorcontrib>Grégori, G.</creatorcontrib><creatorcontrib>Thyssen, M.</creatorcontrib><creatorcontrib>Carlotti, F.</creatorcontrib><creatorcontrib>Barrillon, S.</creatorcontrib><creatorcontrib>Simon‐Bot, F.</creatorcontrib><creatorcontrib>Bonal, M.</creatorcontrib><creatorcontrib>d'Ovidio, F.</creatorcontrib><creatorcontrib>Petrenko, A.</creatorcontrib><title>Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea</title><title>Journal of geophysical research. Oceans</title><description>Vertical velocities can be estimated indirectly from in situ observations by theoretical frameworks like the ω‐equation. Direct measures of vertical exchanges are challenging due to their typically ephemeral spatiotemporal scales. In this study we address this problem with an adaptive sampling strategy coupling various biophysical instruments. We analyze the 3‐D organization of a cyclonic mesoscale structure finely sampled during the Observing Submesoscale Coupling At High Resolution cruise in the Ligurian Sea during fall 2015. The observations, acquired with a moving vessel profiler, highlight a subsurface low‐salinity layer (≃50 m), as well as rising isopycnals, generated by geostrophic cyclonic circulation, in the structure's center. Reconstructed 3‐D fields of density and horizontal velocities are used to estimate the vertical velocity field down to 250 m by applying the adiabatic QG ω‐equation, for the first time in this region. The vertical motions are characterized by multipolar patterns of downward and upward velocities on the edges of the structure and significantly smaller vertical velocities in its center. Both the 3‐D distribution of particles (size ≥100 μm), measured with a laser optical plankton counter, and the Synechococcus and Prochlorococcus abundances (cell per cubic meter) measured by flow cytometry are consistent with the 3‐D velocity field. In particular, a secondary vertical recirculation is identified that upwells particles (from 250 to 100 m) along isohalines to the structure's center. Besides demonstrating the effect of vertical patterns on biogeochemical distributions, this case study suggests to use particle matter as a tracer to assess physical dynamics. Key Points An adaptive sampling strategy allows for fine‐scale observations of biophysical vertical processes inside a cyclonic mesoscale structure Multipolar patterns of intense downward and upward velocities (from adiabatic QG omega‐equation) are identified on the edges of the structure Particle matter appears as a valid tracer of vertical velocities</description><subject>Adaptive control</subject><subject>Adaptive sampling</subject><subject>Adiabatic</subject><subject>Biogeochemistry</subject><subject>Coupling</subject><subject>Cyclonic circulation</subject><subject>Flow cytometry</subject><subject>Geophysics</subject><subject>high‐resolution reconstructions of 3‐D fields</subject><subject>Instruments</subject><subject>Isohalines</subject><subject>Isopycnals</subject><subject>Lasers</subject><subject>Ocean, Atmosphere</subject><subject>Organizations</subject><subject>particle distribution as a tracer for vertical advection</subject><subject>Plankton</subject><subject>Sciences of the Universe</subject><subject>Tracers</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Vertical velocities</subject><subject>vertical velocities estimated with ω‐equation</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90U1LAzEQBuBFFCzqzR8Q8CRYzedmc6yL9YOKoNVrSLMTG9luarKr7L-3a0U8OZcZkoeXgcmyY4LPCabqgmJS3JWYcKboTjaiJFdjRRXZ_Z2l2M-OUnrDmypIwbkaZf0LxNZbU6P70PrQJGSaCs2X4CO6cg5sm1BokEGXPrxCsEtYfet5NBYi8sNX2ds6NN6ipzZ2tu0ioKlvoO7RwyJB_IBqcO0S0My_dtGbBj2BOcz2nKkTHP30g-x5ejUvb8azh-vbcjIbG44pH0NRcLlwIBauYo4RaQtRyQoLkDYvYKHAVZZYWlHLlXSC81xWBctz5ZyUWLKD7HSbuzS1Xke_MrHXwXh9M5np4Q1TQrlU4oNu7MnWrmN47yC1-i10sdmspynNhZBM8CHxbKtsDClFcL-xBOvhFvrvLTacbfmnr6H_1-q768eSMk45-wKMsIl5</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Rousselet, L.</creator><creator>Doglioli, A. M.</creator><creator>Verneil, A.</creator><creator>Pietri, A.</creator><creator>Della Penna, A.</creator><creator>Berline, L.</creator><creator>Marrec, P.</creator><creator>Grégori, G.</creator><creator>Thyssen, M.</creator><creator>Carlotti, F.</creator><creator>Barrillon, S.</creator><creator>Simon‐Bot, F.</creator><creator>Bonal, M.</creator><creator>d'Ovidio, F.</creator><creator>Petrenko, A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1309-9954</orcidid><orcidid>https://orcid.org/0000-0002-5831-7399</orcidid><orcidid>https://orcid.org/0000-0002-2077-3049</orcidid><orcidid>https://orcid.org/0000-0001-5016-3658</orcidid><orcidid>https://orcid.org/0000-0002-8344-7953</orcidid><orcidid>https://orcid.org/0000-0002-7811-4150</orcidid><orcidid>https://orcid.org/0000-0003-1111-9640</orcidid><orcidid>https://orcid.org/0000-0002-7579-3610</orcidid><orcidid>https://orcid.org/0000-0001-9517-1782</orcidid><orcidid>https://orcid.org/0000-0003-1645-9468</orcidid><orcidid>https://orcid.org/0000-0002-7075-1673</orcidid><orcidid>https://orcid.org/0000-0002-3380-8108</orcidid><orcidid>https://orcid.org/0000-0002-2519-9285</orcidid><orcidid>https://orcid.org/0000-0002-9664-7778</orcidid></search><sort><creationdate>201906</creationdate><title>Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea</title><author>Rousselet, L. ; Doglioli, A. M. ; Verneil, A. ; Pietri, A. ; Della Penna, A. ; Berline, L. ; Marrec, P. ; Grégori, G. ; Thyssen, M. ; Carlotti, F. ; Barrillon, S. ; Simon‐Bot, F. ; Bonal, M. ; d'Ovidio, F. ; Petrenko, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4024-e8847bfe5bfd3f317c85d7d05e7c68eb9efdc1c2d2c497f54467d83669ff77073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Adaptive sampling</topic><topic>Adiabatic</topic><topic>Biogeochemistry</topic><topic>Coupling</topic><topic>Cyclonic circulation</topic><topic>Flow cytometry</topic><topic>Geophysics</topic><topic>high‐resolution reconstructions of 3‐D fields</topic><topic>Instruments</topic><topic>Isohalines</topic><topic>Isopycnals</topic><topic>Lasers</topic><topic>Ocean, Atmosphere</topic><topic>Organizations</topic><topic>particle distribution as a tracer for vertical advection</topic><topic>Plankton</topic><topic>Sciences of the Universe</topic><topic>Tracers</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Vertical velocities</topic><topic>vertical velocities estimated with ω‐equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rousselet, L.</creatorcontrib><creatorcontrib>Doglioli, A. M.</creatorcontrib><creatorcontrib>Verneil, A.</creatorcontrib><creatorcontrib>Pietri, A.</creatorcontrib><creatorcontrib>Della Penna, A.</creatorcontrib><creatorcontrib>Berline, L.</creatorcontrib><creatorcontrib>Marrec, P.</creatorcontrib><creatorcontrib>Grégori, G.</creatorcontrib><creatorcontrib>Thyssen, M.</creatorcontrib><creatorcontrib>Carlotti, F.</creatorcontrib><creatorcontrib>Barrillon, S.</creatorcontrib><creatorcontrib>Simon‐Bot, F.</creatorcontrib><creatorcontrib>Bonal, M.</creatorcontrib><creatorcontrib>d'Ovidio, F.</creatorcontrib><creatorcontrib>Petrenko, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousselet, L.</au><au>Doglioli, A. M.</au><au>Verneil, A.</au><au>Pietri, A.</au><au>Della Penna, A.</au><au>Berline, L.</au><au>Marrec, P.</au><au>Grégori, G.</au><au>Thyssen, M.</au><au>Carlotti, F.</au><au>Barrillon, S.</au><au>Simon‐Bot, F.</au><au>Bonal, M.</au><au>d'Ovidio, F.</au><au>Petrenko, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2019-06</date><risdate>2019</risdate><volume>124</volume><issue>6</issue><spage>3561</spage><epage>3574</epage><pages>3561-3574</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Vertical velocities can be estimated indirectly from in situ observations by theoretical frameworks like the ω‐equation. Direct measures of vertical exchanges are challenging due to their typically ephemeral spatiotemporal scales. In this study we address this problem with an adaptive sampling strategy coupling various biophysical instruments. We analyze the 3‐D organization of a cyclonic mesoscale structure finely sampled during the Observing Submesoscale Coupling At High Resolution cruise in the Ligurian Sea during fall 2015. The observations, acquired with a moving vessel profiler, highlight a subsurface low‐salinity layer (≃50 m), as well as rising isopycnals, generated by geostrophic cyclonic circulation, in the structure's center. Reconstructed 3‐D fields of density and horizontal velocities are used to estimate the vertical velocity field down to 250 m by applying the adiabatic QG ω‐equation, for the first time in this region. The vertical motions are characterized by multipolar patterns of downward and upward velocities on the edges of the structure and significantly smaller vertical velocities in its center. Both the 3‐D distribution of particles (size ≥100 μm), measured with a laser optical plankton counter, and the Synechococcus and Prochlorococcus abundances (cell per cubic meter) measured by flow cytometry are consistent with the 3‐D velocity field. In particular, a secondary vertical recirculation is identified that upwells particles (from 250 to 100 m) along isohalines to the structure's center. Besides demonstrating the effect of vertical patterns on biogeochemical distributions, this case study suggests to use particle matter as a tracer to assess physical dynamics. Key Points An adaptive sampling strategy allows for fine‐scale observations of biophysical vertical processes inside a cyclonic mesoscale structure Multipolar patterns of intense downward and upward velocities (from adiabatic QG omega‐equation) are identified on the edges of the structure Particle matter appears as a valid tracer of vertical velocities</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JC014392</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1309-9954</orcidid><orcidid>https://orcid.org/0000-0002-5831-7399</orcidid><orcidid>https://orcid.org/0000-0002-2077-3049</orcidid><orcidid>https://orcid.org/0000-0001-5016-3658</orcidid><orcidid>https://orcid.org/0000-0002-8344-7953</orcidid><orcidid>https://orcid.org/0000-0002-7811-4150</orcidid><orcidid>https://orcid.org/0000-0003-1111-9640</orcidid><orcidid>https://orcid.org/0000-0002-7579-3610</orcidid><orcidid>https://orcid.org/0000-0001-9517-1782</orcidid><orcidid>https://orcid.org/0000-0003-1645-9468</orcidid><orcidid>https://orcid.org/0000-0002-7075-1673</orcidid><orcidid>https://orcid.org/0000-0002-3380-8108</orcidid><orcidid>https://orcid.org/0000-0002-2519-9285</orcidid><orcidid>https://orcid.org/0000-0002-9664-7778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2019-06, Vol.124 (6), p.3561-3574
issn 2169-9275
2169-9291
language eng
recordid cdi_hal_primary_oai_HAL_hal_02124795v2
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Adaptive control
Adaptive sampling
Adiabatic
Biogeochemistry
Coupling
Cyclonic circulation
Flow cytometry
Geophysics
high‐resolution reconstructions of 3‐D fields
Instruments
Isohalines
Isopycnals
Lasers
Ocean, Atmosphere
Organizations
particle distribution as a tracer for vertical advection
Plankton
Sciences of the Universe
Tracers
Velocity
Velocity distribution
Vertical velocities
vertical velocities estimated with ω‐equation
title Vertical Motions and Their Effects on a Biogeochemical Tracer in a Cyclonic Structure Finely Observed in the Ligurian Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20Motions%20and%20Their%20Effects%20on%20a%20Biogeochemical%20Tracer%20in%20a%20Cyclonic%20Structure%20Finely%20Observed%20in%20the%20Ligurian%20Sea&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Rousselet,%20L.&rft.date=2019-06&rft.volume=124&rft.issue=6&rft.spage=3561&rft.epage=3574&rft.pages=3561-3574&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1029/2018JC014392&rft_dat=%3Cproquest_hal_p%3E2265573547%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265573547&rft_id=info:pmid/&rfr_iscdi=true