Anisotropic adaptive stabilized finite element solver for RANS models

Summary Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2018-04, Vol.86 (11), p.717-736
Hauptverfasser: Sari, J., Cremonesi, F., Khalloufi, M., Cauneau, F., Meliga, P., Mesri, Y., Hachem, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 736
container_issue 11
container_start_page 717
container_title International journal for numerical methods in fluids
container_volume 86
creator Sari, J.
Cremonesi, F.
Khalloufi, M.
Cauneau, F.
Meliga, P.
Mesri, Y.
Hachem, E.
description Summary Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases. In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.
doi_str_mv 10.1002/fld.4475
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02115828v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011893588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMC3uhFZz7apL0cc3NCUfDjOmTtCWZkTU26yfz1dla88-rA4eHl5UXokpIJJYTdGldP0lRmR2hESSETwgU_RiPCJE0YKegpOotxTQgpWM5HaD5tbPRd8K2tsK5129kd4NjplXX2C2psbGM7wOBgA02Ho3c7CNj4gJ-njy9442tw8RydGO0iXPzeMXpbzF9ny6R8un-YTcuk4oJmCbCaV4TRVGecZ1rCKgXBtCRFbvpCOuUrWgkhQROR8ZplBoQwggspCU_Tmo_RzZD7rp1qg93osFdeW7Wclurw68NplrN8R3t7Ndg2-I8txE6t_TY0fT3FCKV5wbM879X1oKrgYwxg_mIpUYdBVT-oOgza02Sgn9bB_l-nFuXdj_8G2r50Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011893588</pqid></control><display><type>article</type><title>Anisotropic adaptive stabilized finite element solver for RANS models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sari, J. ; Cremonesi, F. ; Khalloufi, M. ; Cauneau, F. ; Meliga, P. ; Mesri, Y. ; Hachem, E.</creator><creatorcontrib>Sari, J. ; Cremonesi, F. ; Khalloufi, M. ; Cauneau, F. ; Meliga, P. ; Mesri, Y. ; Hachem, E.</creatorcontrib><description>Summary Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases. In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.4475</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Adaptation ; Aerodynamic characteristics ; Aerodynamics ; anisotropic mesh adaptation ; Anisotropy ; boundary layers ; Coefficients ; Computational fluid dynamics ; Computer applications ; Engineering Sciences ; Error detection ; Finite element method ; Frameworks ; Galerkin method ; Materials ; Mathematical models ; Multiscale analysis ; Navier-Stokes equations ; Numerical prediction ; Reynolds‐averaged Navier‐Stokes ; Spalart-Allmaras turbulence model ; Spalart‐Allmaras ; Stability ; stabilized finite element method ; Streamlines ; Turbulence ; Turbulence models ; turbulent flows</subject><ispartof>International journal for numerical methods in fluids, 2018-04, Vol.86 (11), p.717-736</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</citedby><cites>FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</cites><orcidid>0000-0002-2202-6397 ; 0000-0002-5646-8863 ; 0000-0001-9889-0520 ; 0000-0002-5136-5435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.4475$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.4475$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-02115828$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sari, J.</creatorcontrib><creatorcontrib>Cremonesi, F.</creatorcontrib><creatorcontrib>Khalloufi, M.</creatorcontrib><creatorcontrib>Cauneau, F.</creatorcontrib><creatorcontrib>Meliga, P.</creatorcontrib><creatorcontrib>Mesri, Y.</creatorcontrib><creatorcontrib>Hachem, E.</creatorcontrib><title>Anisotropic adaptive stabilized finite element solver for RANS models</title><title>International journal for numerical methods in fluids</title><description>Summary Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases. In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Aerodynamic characteristics</subject><subject>Aerodynamics</subject><subject>anisotropic mesh adaptation</subject><subject>Anisotropy</subject><subject>boundary layers</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Engineering Sciences</subject><subject>Error detection</subject><subject>Finite element method</subject><subject>Frameworks</subject><subject>Galerkin method</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Multiscale analysis</subject><subject>Navier-Stokes equations</subject><subject>Numerical prediction</subject><subject>Reynolds‐averaged Navier‐Stokes</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Spalart‐Allmaras</subject><subject>Stability</subject><subject>stabilized finite element method</subject><subject>Streamlines</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>turbulent flows</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMC3uhFZz7apL0cc3NCUfDjOmTtCWZkTU26yfz1dla88-rA4eHl5UXokpIJJYTdGldP0lRmR2hESSETwgU_RiPCJE0YKegpOotxTQgpWM5HaD5tbPRd8K2tsK5129kd4NjplXX2C2psbGM7wOBgA02Ho3c7CNj4gJ-njy9442tw8RydGO0iXPzeMXpbzF9ny6R8un-YTcuk4oJmCbCaV4TRVGecZ1rCKgXBtCRFbvpCOuUrWgkhQROR8ZplBoQwggspCU_Tmo_RzZD7rp1qg93osFdeW7Wclurw68NplrN8R3t7Ndg2-I8txE6t_TY0fT3FCKV5wbM879X1oKrgYwxg_mIpUYdBVT-oOgza02Sgn9bB_l-nFuXdj_8G2r50Lg</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Sari, J.</creator><creator>Cremonesi, F.</creator><creator>Khalloufi, M.</creator><creator>Cauneau, F.</creator><creator>Meliga, P.</creator><creator>Mesri, Y.</creator><creator>Hachem, E.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid><orcidid>https://orcid.org/0000-0001-9889-0520</orcidid><orcidid>https://orcid.org/0000-0002-5136-5435</orcidid></search><sort><creationdate>20180420</creationdate><title>Anisotropic adaptive stabilized finite element solver for RANS models</title><author>Sari, J. ; Cremonesi, F. ; Khalloufi, M. ; Cauneau, F. ; Meliga, P. ; Mesri, Y. ; Hachem, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Aerodynamic characteristics</topic><topic>Aerodynamics</topic><topic>anisotropic mesh adaptation</topic><topic>Anisotropy</topic><topic>boundary layers</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Engineering Sciences</topic><topic>Error detection</topic><topic>Finite element method</topic><topic>Frameworks</topic><topic>Galerkin method</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Multiscale analysis</topic><topic>Navier-Stokes equations</topic><topic>Numerical prediction</topic><topic>Reynolds‐averaged Navier‐Stokes</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Spalart‐Allmaras</topic><topic>Stability</topic><topic>stabilized finite element method</topic><topic>Streamlines</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>turbulent flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sari, J.</creatorcontrib><creatorcontrib>Cremonesi, F.</creatorcontrib><creatorcontrib>Khalloufi, M.</creatorcontrib><creatorcontrib>Cauneau, F.</creatorcontrib><creatorcontrib>Meliga, P.</creatorcontrib><creatorcontrib>Mesri, Y.</creatorcontrib><creatorcontrib>Hachem, E.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sari, J.</au><au>Cremonesi, F.</au><au>Khalloufi, M.</au><au>Cauneau, F.</au><au>Meliga, P.</au><au>Mesri, Y.</au><au>Hachem, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic adaptive stabilized finite element solver for RANS models</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2018-04-20</date><risdate>2018</risdate><volume>86</volume><issue>11</issue><spage>717</spage><epage>736</epage><pages>717-736</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>Summary Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases. In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.4475</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid><orcidid>https://orcid.org/0000-0001-9889-0520</orcidid><orcidid>https://orcid.org/0000-0002-5136-5435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2018-04, Vol.86 (11), p.717-736
issn 0271-2091
1097-0363
language eng
recordid cdi_hal_primary_oai_HAL_hal_02115828v1
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Adaptation
Aerodynamic characteristics
Aerodynamics
anisotropic mesh adaptation
Anisotropy
boundary layers
Coefficients
Computational fluid dynamics
Computer applications
Engineering Sciences
Error detection
Finite element method
Frameworks
Galerkin method
Materials
Mathematical models
Multiscale analysis
Navier-Stokes equations
Numerical prediction
Reynolds‐averaged Navier‐Stokes
Spalart-Allmaras turbulence model
Spalart‐Allmaras
Stability
stabilized finite element method
Streamlines
Turbulence
Turbulence models
turbulent flows
title Anisotropic adaptive stabilized finite element solver for RANS models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20adaptive%20stabilized%20finite%20element%20solver%20for%20RANS%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Sari,%20J.&rft.date=2018-04-20&rft.volume=86&rft.issue=11&rft.spage=717&rft.epage=736&rft.pages=717-736&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.4475&rft_dat=%3Cproquest_hal_p%3E2011893588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011893588&rft_id=info:pmid/&rfr_iscdi=true