Anisotropic adaptive stabilized finite element solver for RANS models
Summary Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically a...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2018-04, Vol.86 (11), p.717-736 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 736 |
---|---|
container_issue | 11 |
container_start_page | 717 |
container_title | International journal for numerical methods in fluids |
container_volume | 86 |
creator | Sari, J. Cremonesi, F. Khalloufi, M. Cauneau, F. Meliga, P. Mesri, Y. Hachem, E. |
description | Summary
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.
In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm. |
doi_str_mv | 10.1002/fld.4475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02115828v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011893588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMC3uhFZz7apL0cc3NCUfDjOmTtCWZkTU26yfz1dla88-rA4eHl5UXokpIJJYTdGldP0lRmR2hESSETwgU_RiPCJE0YKegpOotxTQgpWM5HaD5tbPRd8K2tsK5129kd4NjplXX2C2psbGM7wOBgA02Ho3c7CNj4gJ-njy9442tw8RydGO0iXPzeMXpbzF9ny6R8un-YTcuk4oJmCbCaV4TRVGecZ1rCKgXBtCRFbvpCOuUrWgkhQROR8ZplBoQwggspCU_Tmo_RzZD7rp1qg93osFdeW7Wclurw68NplrN8R3t7Ndg2-I8txE6t_TY0fT3FCKV5wbM879X1oKrgYwxg_mIpUYdBVT-oOgza02Sgn9bB_l-nFuXdj_8G2r50Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011893588</pqid></control><display><type>article</type><title>Anisotropic adaptive stabilized finite element solver for RANS models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sari, J. ; Cremonesi, F. ; Khalloufi, M. ; Cauneau, F. ; Meliga, P. ; Mesri, Y. ; Hachem, E.</creator><creatorcontrib>Sari, J. ; Cremonesi, F. ; Khalloufi, M. ; Cauneau, F. ; Meliga, P. ; Mesri, Y. ; Hachem, E.</creatorcontrib><description>Summary
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.
In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.4475</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Adaptation ; Aerodynamic characteristics ; Aerodynamics ; anisotropic mesh adaptation ; Anisotropy ; boundary layers ; Coefficients ; Computational fluid dynamics ; Computer applications ; Engineering Sciences ; Error detection ; Finite element method ; Frameworks ; Galerkin method ; Materials ; Mathematical models ; Multiscale analysis ; Navier-Stokes equations ; Numerical prediction ; Reynolds‐averaged Navier‐Stokes ; Spalart-Allmaras turbulence model ; Spalart‐Allmaras ; Stability ; stabilized finite element method ; Streamlines ; Turbulence ; Turbulence models ; turbulent flows</subject><ispartof>International journal for numerical methods in fluids, 2018-04, Vol.86 (11), p.717-736</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</citedby><cites>FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</cites><orcidid>0000-0002-2202-6397 ; 0000-0002-5646-8863 ; 0000-0001-9889-0520 ; 0000-0002-5136-5435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.4475$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.4475$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-02115828$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sari, J.</creatorcontrib><creatorcontrib>Cremonesi, F.</creatorcontrib><creatorcontrib>Khalloufi, M.</creatorcontrib><creatorcontrib>Cauneau, F.</creatorcontrib><creatorcontrib>Meliga, P.</creatorcontrib><creatorcontrib>Mesri, Y.</creatorcontrib><creatorcontrib>Hachem, E.</creatorcontrib><title>Anisotropic adaptive stabilized finite element solver for RANS models</title><title>International journal for numerical methods in fluids</title><description>Summary
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.
In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Aerodynamic characteristics</subject><subject>Aerodynamics</subject><subject>anisotropic mesh adaptation</subject><subject>Anisotropy</subject><subject>boundary layers</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Engineering Sciences</subject><subject>Error detection</subject><subject>Finite element method</subject><subject>Frameworks</subject><subject>Galerkin method</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Multiscale analysis</subject><subject>Navier-Stokes equations</subject><subject>Numerical prediction</subject><subject>Reynolds‐averaged Navier‐Stokes</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Spalart‐Allmaras</subject><subject>Stability</subject><subject>stabilized finite element method</subject><subject>Streamlines</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>turbulent flows</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMC3uhFZz7apL0cc3NCUfDjOmTtCWZkTU26yfz1dla88-rA4eHl5UXokpIJJYTdGldP0lRmR2hESSETwgU_RiPCJE0YKegpOotxTQgpWM5HaD5tbPRd8K2tsK5129kd4NjplXX2C2psbGM7wOBgA02Ho3c7CNj4gJ-njy9442tw8RydGO0iXPzeMXpbzF9ny6R8un-YTcuk4oJmCbCaV4TRVGecZ1rCKgXBtCRFbvpCOuUrWgkhQROR8ZplBoQwggspCU_Tmo_RzZD7rp1qg93osFdeW7Wclurw68NplrN8R3t7Ndg2-I8txE6t_TY0fT3FCKV5wbM879X1oKrgYwxg_mIpUYdBVT-oOgza02Sgn9bB_l-nFuXdj_8G2r50Lg</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Sari, J.</creator><creator>Cremonesi, F.</creator><creator>Khalloufi, M.</creator><creator>Cauneau, F.</creator><creator>Meliga, P.</creator><creator>Mesri, Y.</creator><creator>Hachem, E.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid><orcidid>https://orcid.org/0000-0001-9889-0520</orcidid><orcidid>https://orcid.org/0000-0002-5136-5435</orcidid></search><sort><creationdate>20180420</creationdate><title>Anisotropic adaptive stabilized finite element solver for RANS models</title><author>Sari, J. ; Cremonesi, F. ; Khalloufi, M. ; Cauneau, F. ; Meliga, P. ; Mesri, Y. ; Hachem, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3615-e2d3c0214a5335a7eb4e62a7098f009a43b1c667ea0653d25fe66f636770344d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Aerodynamic characteristics</topic><topic>Aerodynamics</topic><topic>anisotropic mesh adaptation</topic><topic>Anisotropy</topic><topic>boundary layers</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Engineering Sciences</topic><topic>Error detection</topic><topic>Finite element method</topic><topic>Frameworks</topic><topic>Galerkin method</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Multiscale analysis</topic><topic>Navier-Stokes equations</topic><topic>Numerical prediction</topic><topic>Reynolds‐averaged Navier‐Stokes</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Spalart‐Allmaras</topic><topic>Stability</topic><topic>stabilized finite element method</topic><topic>Streamlines</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>turbulent flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sari, J.</creatorcontrib><creatorcontrib>Cremonesi, F.</creatorcontrib><creatorcontrib>Khalloufi, M.</creatorcontrib><creatorcontrib>Cauneau, F.</creatorcontrib><creatorcontrib>Meliga, P.</creatorcontrib><creatorcontrib>Mesri, Y.</creatorcontrib><creatorcontrib>Hachem, E.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sari, J.</au><au>Cremonesi, F.</au><au>Khalloufi, M.</au><au>Cauneau, F.</au><au>Meliga, P.</au><au>Mesri, Y.</au><au>Hachem, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic adaptive stabilized finite element solver for RANS models</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2018-04-20</date><risdate>2018</risdate><volume>86</volume><issue>11</issue><spage>717</spage><epage>736</epage><pages>717-736</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>Summary
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.
In this paper, we propose an adaptive anisotropic mesh methodology for performing accurate numerical simulations of turbulent flows past complex geometries. It couples a stabilized variational multiscale Navier‐Stokes modified solver to account for high stretched elements, a Spalart‐Allmaras turbulent model with a dynamic anisotropic mesh adaptation algorithm.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.4475</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid><orcidid>https://orcid.org/0000-0001-9889-0520</orcidid><orcidid>https://orcid.org/0000-0002-5136-5435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2018-04, Vol.86 (11), p.717-736 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02115828v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Adaptation Aerodynamic characteristics Aerodynamics anisotropic mesh adaptation Anisotropy boundary layers Coefficients Computational fluid dynamics Computer applications Engineering Sciences Error detection Finite element method Frameworks Galerkin method Materials Mathematical models Multiscale analysis Navier-Stokes equations Numerical prediction Reynolds‐averaged Navier‐Stokes Spalart-Allmaras turbulence model Spalart‐Allmaras Stability stabilized finite element method Streamlines Turbulence Turbulence models turbulent flows |
title | Anisotropic adaptive stabilized finite element solver for RANS models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20adaptive%20stabilized%20finite%20element%20solver%20for%20RANS%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Sari,%20J.&rft.date=2018-04-20&rft.volume=86&rft.issue=11&rft.spage=717&rft.epage=736&rft.pages=717-736&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.4475&rft_dat=%3Cproquest_hal_p%3E2011893588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011893588&rft_id=info:pmid/&rfr_iscdi=true |