Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers
ABSTRACT Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a qu...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2018-08, Vol.56 (16), p.1164-1173 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1173 |
---|---|
container_issue | 16 |
container_start_page | 1164 |
container_title | Journal of polymer science. Part B, Polymer physics |
container_volume | 56 |
creator | Pedroli, Francesco Marrani, Alessio Le, Minh‐Quyen Froidefond, Cédric Cottinet, Pierre‐Jean Capsal, Jean‐Fabien |
description | ABSTRACT
Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173
The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications. |
doi_str_mv | 10.1002/polb.24636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02113828v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092469739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcvfoKATwqd-dOmiW9zqBMG24M-hzRNXUbXzKTbqJ_e1IqPPl2453cP5x4ArjGaYITI_c7VxYSkjLITMMJIiASlnJ-CEeI8Txhh7BxchLBBKGqZGIFm5Z02IdjmA7pda7f2S7XWNQ9wCo-qg62Ddrvz7mBguzYwKlZD7Zpyr1t7sG0HVVPC0pra6NZHrXYhQFfBYeFUjxkYc3Vb48MlOKtUHczV7xyD9-ent9k8WSxfXmfTRaJpTliiEUXCZKhCWUqzlHCuCs6z0tAqZ9ognmOudCWYoSUu05SoomSVEpTTgjOV0TG4HXzXqpY7b7fKd9IpK-fThex3iGBMOeEHHNmbgY1vfu5NaOXG7X0T40mCRCxT5FRE6m6gtI8felP92WIk--5l37386T7CeICPtjbdP6RcLRePw803dbuHow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092469739</pqid></control><display><type>article</type><title>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</title><source>Access via Wiley Online Library</source><creator>Pedroli, Francesco ; Marrani, Alessio ; Le, Minh‐Quyen ; Froidefond, Cédric ; Cottinet, Pierre‐Jean ; Capsal, Jean‐Fabien</creator><creatorcontrib>Pedroli, Francesco ; Marrani, Alessio ; Le, Minh‐Quyen ; Froidefond, Cédric ; Cottinet, Pierre‐Jean ; Capsal, Jean‐Fabien</creatorcontrib><description>ABSTRACT
Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173
The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.24636</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>blocking force ; Chemical synthesis ; Crystallization ; Dependence ; Dielectric breakdown ; Dielectric loss ; Dielectric strength ; electrical breakdown ; Electrical resistivity ; Electroactive polymers ; Electrostriction ; Engineering Sciences ; flexible actuator ; Flexible components ; Flux density ; Ion currents ; ionic conductivity ; Molecular weight ; polarization loop ; polymer synthesis ; Polymers ; Process parameters ; processing optimization ; relaxor ferroelectrics ; Strain</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2018-08, Vol.56 (16), p.1164-1173</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</citedby><cites>FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</cites><orcidid>0000-0001-5607-1578 ; 0000-0001-5907-159X ; 0000-0003-2904-8422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.24636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.24636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02113828$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedroli, Francesco</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Le, Minh‐Quyen</creatorcontrib><creatorcontrib>Froidefond, Cédric</creatorcontrib><creatorcontrib>Cottinet, Pierre‐Jean</creatorcontrib><creatorcontrib>Capsal, Jean‐Fabien</creatorcontrib><title>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</title><title>Journal of polymer science. Part B, Polymer physics</title><description>ABSTRACT
Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173
The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.</description><subject>blocking force</subject><subject>Chemical synthesis</subject><subject>Crystallization</subject><subject>Dependence</subject><subject>Dielectric breakdown</subject><subject>Dielectric loss</subject><subject>Dielectric strength</subject><subject>electrical breakdown</subject><subject>Electrical resistivity</subject><subject>Electroactive polymers</subject><subject>Electrostriction</subject><subject>Engineering Sciences</subject><subject>flexible actuator</subject><subject>Flexible components</subject><subject>Flux density</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Molecular weight</subject><subject>polarization loop</subject><subject>polymer synthesis</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>processing optimization</subject><subject>relaxor ferroelectrics</subject><subject>Strain</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcvfoKATwqd-dOmiW9zqBMG24M-hzRNXUbXzKTbqJ_e1IqPPl2453cP5x4ArjGaYITI_c7VxYSkjLITMMJIiASlnJ-CEeI8Txhh7BxchLBBKGqZGIFm5Z02IdjmA7pda7f2S7XWNQ9wCo-qg62Ddrvz7mBguzYwKlZD7Zpyr1t7sG0HVVPC0pra6NZHrXYhQFfBYeFUjxkYc3Vb48MlOKtUHczV7xyD9-ent9k8WSxfXmfTRaJpTliiEUXCZKhCWUqzlHCuCs6z0tAqZ9ognmOudCWYoSUu05SoomSVEpTTgjOV0TG4HXzXqpY7b7fKd9IpK-fThex3iGBMOeEHHNmbgY1vfu5NaOXG7X0T40mCRCxT5FRE6m6gtI8felP92WIk--5l37386T7CeICPtjbdP6RcLRePw803dbuHow</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Pedroli, Francesco</creator><creator>Marrani, Alessio</creator><creator>Le, Minh‐Quyen</creator><creator>Froidefond, Cédric</creator><creator>Cottinet, Pierre‐Jean</creator><creator>Capsal, Jean‐Fabien</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5607-1578</orcidid><orcidid>https://orcid.org/0000-0001-5907-159X</orcidid><orcidid>https://orcid.org/0000-0003-2904-8422</orcidid></search><sort><creationdate>20180815</creationdate><title>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</title><author>Pedroli, Francesco ; Marrani, Alessio ; Le, Minh‐Quyen ; Froidefond, Cédric ; Cottinet, Pierre‐Jean ; Capsal, Jean‐Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>blocking force</topic><topic>Chemical synthesis</topic><topic>Crystallization</topic><topic>Dependence</topic><topic>Dielectric breakdown</topic><topic>Dielectric loss</topic><topic>Dielectric strength</topic><topic>electrical breakdown</topic><topic>Electrical resistivity</topic><topic>Electroactive polymers</topic><topic>Electrostriction</topic><topic>Engineering Sciences</topic><topic>flexible actuator</topic><topic>Flexible components</topic><topic>Flux density</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Molecular weight</topic><topic>polarization loop</topic><topic>polymer synthesis</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>processing optimization</topic><topic>relaxor ferroelectrics</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedroli, Francesco</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Le, Minh‐Quyen</creatorcontrib><creatorcontrib>Froidefond, Cédric</creatorcontrib><creatorcontrib>Cottinet, Pierre‐Jean</creatorcontrib><creatorcontrib>Capsal, Jean‐Fabien</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedroli, Francesco</au><au>Marrani, Alessio</au><au>Le, Minh‐Quyen</au><au>Froidefond, Cédric</au><au>Cottinet, Pierre‐Jean</au><au>Capsal, Jean‐Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>56</volume><issue>16</issue><spage>1164</spage><epage>1173</epage><pages>1164-1173</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><abstract>ABSTRACT
Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173
The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/polb.24636</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5607-1578</orcidid><orcidid>https://orcid.org/0000-0001-5907-159X</orcidid><orcidid>https://orcid.org/0000-0003-2904-8422</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6266 |
ispartof | Journal of polymer science. Part B, Polymer physics, 2018-08, Vol.56 (16), p.1164-1173 |
issn | 0887-6266 1099-0488 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02113828v1 |
source | Access via Wiley Online Library |
subjects | blocking force Chemical synthesis Crystallization Dependence Dielectric breakdown Dielectric loss Dielectric strength electrical breakdown Electrical resistivity Electroactive polymers Electrostriction Engineering Sciences flexible actuator Flexible components Flux density Ion currents ionic conductivity Molecular weight polarization loop polymer synthesis Polymers Process parameters processing optimization relaxor ferroelectrics Strain |
title | Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20optimization:%20A%20way%20to%20improve%20the%20ionic%20conductivity%20and%20dielectric%20loss%20of%20electroactive%20polymers&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Pedroli,%20Francesco&rft.date=2018-08-15&rft.volume=56&rft.issue=16&rft.spage=1164&rft.epage=1173&rft.pages=1164-1173&rft.issn=0887-6266&rft.eissn=1099-0488&rft_id=info:doi/10.1002/polb.24636&rft_dat=%3Cproquest_hal_p%3E2092469739%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092469739&rft_id=info:pmid/&rfr_iscdi=true |