Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers

ABSTRACT Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2018-08, Vol.56 (16), p.1164-1173
Hauptverfasser: Pedroli, Francesco, Marrani, Alessio, Le, Minh‐Quyen, Froidefond, Cédric, Cottinet, Pierre‐Jean, Capsal, Jean‐Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1173
container_issue 16
container_start_page 1164
container_title Journal of polymer science. Part B, Polymer physics
container_volume 56
creator Pedroli, Francesco
Marrani, Alessio
Le, Minh‐Quyen
Froidefond, Cédric
Cottinet, Pierre‐Jean
Capsal, Jean‐Fabien
description ABSTRACT Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173 The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.
doi_str_mv 10.1002/polb.24636
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02113828v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092469739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcvfoKATwqd-dOmiW9zqBMG24M-hzRNXUbXzKTbqJ_e1IqPPl2453cP5x4ArjGaYITI_c7VxYSkjLITMMJIiASlnJ-CEeI8Txhh7BxchLBBKGqZGIFm5Z02IdjmA7pda7f2S7XWNQ9wCo-qg62Ddrvz7mBguzYwKlZD7Zpyr1t7sG0HVVPC0pra6NZHrXYhQFfBYeFUjxkYc3Vb48MlOKtUHczV7xyD9-ent9k8WSxfXmfTRaJpTliiEUXCZKhCWUqzlHCuCs6z0tAqZ9ognmOudCWYoSUu05SoomSVEpTTgjOV0TG4HXzXqpY7b7fKd9IpK-fThex3iGBMOeEHHNmbgY1vfu5NaOXG7X0T40mCRCxT5FRE6m6gtI8felP92WIk--5l37386T7CeICPtjbdP6RcLRePw803dbuHow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092469739</pqid></control><display><type>article</type><title>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</title><source>Access via Wiley Online Library</source><creator>Pedroli, Francesco ; Marrani, Alessio ; Le, Minh‐Quyen ; Froidefond, Cédric ; Cottinet, Pierre‐Jean ; Capsal, Jean‐Fabien</creator><creatorcontrib>Pedroli, Francesco ; Marrani, Alessio ; Le, Minh‐Quyen ; Froidefond, Cédric ; Cottinet, Pierre‐Jean ; Capsal, Jean‐Fabien</creatorcontrib><description>ABSTRACT Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173 The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.24636</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>blocking force ; Chemical synthesis ; Crystallization ; Dependence ; Dielectric breakdown ; Dielectric loss ; Dielectric strength ; electrical breakdown ; Electrical resistivity ; Electroactive polymers ; Electrostriction ; Engineering Sciences ; flexible actuator ; Flexible components ; Flux density ; Ion currents ; ionic conductivity ; Molecular weight ; polarization loop ; polymer synthesis ; Polymers ; Process parameters ; processing optimization ; relaxor ferroelectrics ; Strain</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2018-08, Vol.56 (16), p.1164-1173</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</citedby><cites>FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</cites><orcidid>0000-0001-5607-1578 ; 0000-0001-5907-159X ; 0000-0003-2904-8422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.24636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.24636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02113828$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedroli, Francesco</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Le, Minh‐Quyen</creatorcontrib><creatorcontrib>Froidefond, Cédric</creatorcontrib><creatorcontrib>Cottinet, Pierre‐Jean</creatorcontrib><creatorcontrib>Capsal, Jean‐Fabien</creatorcontrib><title>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</title><title>Journal of polymer science. Part B, Polymer physics</title><description>ABSTRACT Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173 The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.</description><subject>blocking force</subject><subject>Chemical synthesis</subject><subject>Crystallization</subject><subject>Dependence</subject><subject>Dielectric breakdown</subject><subject>Dielectric loss</subject><subject>Dielectric strength</subject><subject>electrical breakdown</subject><subject>Electrical resistivity</subject><subject>Electroactive polymers</subject><subject>Electrostriction</subject><subject>Engineering Sciences</subject><subject>flexible actuator</subject><subject>Flexible components</subject><subject>Flux density</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Molecular weight</subject><subject>polarization loop</subject><subject>polymer synthesis</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>processing optimization</subject><subject>relaxor ferroelectrics</subject><subject>Strain</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcvfoKATwqd-dOmiW9zqBMG24M-hzRNXUbXzKTbqJ_e1IqPPl2453cP5x4ArjGaYITI_c7VxYSkjLITMMJIiASlnJ-CEeI8Txhh7BxchLBBKGqZGIFm5Z02IdjmA7pda7f2S7XWNQ9wCo-qg62Ddrvz7mBguzYwKlZD7Zpyr1t7sG0HVVPC0pra6NZHrXYhQFfBYeFUjxkYc3Vb48MlOKtUHczV7xyD9-ent9k8WSxfXmfTRaJpTliiEUXCZKhCWUqzlHCuCs6z0tAqZ9ognmOudCWYoSUu05SoomSVEpTTgjOV0TG4HXzXqpY7b7fKd9IpK-fThex3iGBMOeEHHNmbgY1vfu5NaOXG7X0T40mCRCxT5FRE6m6gtI8felP92WIk--5l37386T7CeICPtjbdP6RcLRePw803dbuHow</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Pedroli, Francesco</creator><creator>Marrani, Alessio</creator><creator>Le, Minh‐Quyen</creator><creator>Froidefond, Cédric</creator><creator>Cottinet, Pierre‐Jean</creator><creator>Capsal, Jean‐Fabien</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5607-1578</orcidid><orcidid>https://orcid.org/0000-0001-5907-159X</orcidid><orcidid>https://orcid.org/0000-0003-2904-8422</orcidid></search><sort><creationdate>20180815</creationdate><title>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</title><author>Pedroli, Francesco ; Marrani, Alessio ; Le, Minh‐Quyen ; Froidefond, Cédric ; Cottinet, Pierre‐Jean ; Capsal, Jean‐Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3726-c0309e50f054354288ab885de3f76ce08718acf96e3d1d442abd6fa9383b86a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>blocking force</topic><topic>Chemical synthesis</topic><topic>Crystallization</topic><topic>Dependence</topic><topic>Dielectric breakdown</topic><topic>Dielectric loss</topic><topic>Dielectric strength</topic><topic>electrical breakdown</topic><topic>Electrical resistivity</topic><topic>Electroactive polymers</topic><topic>Electrostriction</topic><topic>Engineering Sciences</topic><topic>flexible actuator</topic><topic>Flexible components</topic><topic>Flux density</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Molecular weight</topic><topic>polarization loop</topic><topic>polymer synthesis</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>processing optimization</topic><topic>relaxor ferroelectrics</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedroli, Francesco</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Le, Minh‐Quyen</creatorcontrib><creatorcontrib>Froidefond, Cédric</creatorcontrib><creatorcontrib>Cottinet, Pierre‐Jean</creatorcontrib><creatorcontrib>Capsal, Jean‐Fabien</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedroli, Francesco</au><au>Marrani, Alessio</au><au>Le, Minh‐Quyen</au><au>Froidefond, Cédric</au><au>Cottinet, Pierre‐Jean</au><au>Capsal, Jean‐Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>56</volume><issue>16</issue><spage>1164</spage><epage>1173</epage><pages>1164-1173</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><abstract>ABSTRACT Electro‐active polymers (EAPs) such as P(VDF‐TrFE‐CTFE) are greatly promising in the field of flexible sensors and actuators, but their low dielectric strength driven by ionic conductivity is a main concern for achieving high electrostrictive performance. It is well known that there is a quadratic dependence of the strain response and mechanical energy density on the applied electric field. This dependence highlights the importance of improving the electrical breakdown EAPs while reducing the dielectric losses. This article demonstrates that it is possible to dramatically increase the electrical breakdown and decrease the dielectric losses by controlling processing parameters of the polymer synthesis and fabrication procedure. As a result, an enhancement of around 70% is achieved in both the strain and blocking force. The effects on the dielectric losses of the polymer crystallinity, molecular weight, solvent purity, and crystallization temperature are also investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1164–1173 The interesting and highly promising features of electro‐active polymers in the field of actuators, such as P(VDF‐TrFE‐CTFE), are severely limited by their low electrical strength. The quadratic dependence of Applied‐Electric Field on Field‐Induced Strain highlights the importance of improving electrical breakdown of electro‐active polymers. Through optimization of polymer synthesis and polymer solution‐processing, control of polymer electrical strength is possible. It will be demonstrated in this work that a huge improvement in electrical strength could be achieved, showing high potential of the proposed material in actuation applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/polb.24636</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5607-1578</orcidid><orcidid>https://orcid.org/0000-0001-5907-159X</orcidid><orcidid>https://orcid.org/0000-0003-2904-8422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2018-08, Vol.56 (16), p.1164-1173
issn 0887-6266
1099-0488
language eng
recordid cdi_hal_primary_oai_HAL_hal_02113828v1
source Access via Wiley Online Library
subjects blocking force
Chemical synthesis
Crystallization
Dependence
Dielectric breakdown
Dielectric loss
Dielectric strength
electrical breakdown
Electrical resistivity
Electroactive polymers
Electrostriction
Engineering Sciences
flexible actuator
Flexible components
Flux density
Ion currents
ionic conductivity
Molecular weight
polarization loop
polymer synthesis
Polymers
Process parameters
processing optimization
relaxor ferroelectrics
Strain
title Processing optimization: A way to improve the ionic conductivity and dielectric loss of electroactive polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing%20optimization:%20A%20way%20to%20improve%20the%20ionic%20conductivity%20and%20dielectric%20loss%20of%20electroactive%20polymers&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Pedroli,%20Francesco&rft.date=2018-08-15&rft.volume=56&rft.issue=16&rft.spage=1164&rft.epage=1173&rft.pages=1164-1173&rft.issn=0887-6266&rft.eissn=1099-0488&rft_id=info:doi/10.1002/polb.24636&rft_dat=%3Cproquest_hal_p%3E2092469739%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092469739&rft_id=info:pmid/&rfr_iscdi=true