NanoSIMS mapping and LA-ICP-MS chemical and U–Th–Pb data in monazite from a xenolith enclosed in andesite (Central Slovakia Volcanic Field)
In this study, we use NanoSIMS element and isotope ratio mapping and LA-ICP-MS trace element measurements to elucidate the origins of monazites from a restitic xenolith enclosed in a 13.5 ± 0.3 Ma andesitic lava (Slovakia). The xenolith/lava interaction is mainly characterized by the growth of a pla...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2015-12, Vol.170 (5-6), p.1-21, Article 45 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we use NanoSIMS element and isotope ratio mapping and LA-ICP-MS trace element measurements to elucidate the origins of monazites from a restitic xenolith enclosed in a 13.5 ± 0.3 Ma andesitic lava (Slovakia). The xenolith/lava interaction is mainly characterized by the growth of a plagioclase-bearing corona around the xenolith and magmatic garnet overgrowths on primary metamorphic garnets within the xenolith. NanoSIMS images (
89
Y,
139
La,
208
Pb,
232
Th and
238
U) and trace element analyses indicate that variations of HREE, Y and Eu contents in the monazite are correlated with the resorption and the following overgrowth of garnet and plagioclase in the xenolith. Three domains are distinguished in the monazite grains: the inherited Variscan core at ca. 310 Ma (M1 domain) characterized by low Y and HREE contents and a weak negative Eu anomaly; the inner rim (M2 domain) crystallized during the growth of the plagioclase magmatic corona (large negative Eu anomaly) and the resorption of metamorphic garnet (high HREE and Y contents); and the external rim (M3 domain) crystallized during the growth of the plagioclase corona (large negative Eu anomaly) and during the crystallization of magmatic garnet (low Y, HREE contents) at ~13 Ma, i.e. the age of the andesitic lava. The age and chemical zonation of the monazites attest to the preservation of primary monazite in the xenolith despite the interaction with the andesite lava. NanoSIMS imaging provides high-quality sub-µm scale images of the monazite that reveals chemical domains that were not distinguishable on WDS X-ray maps, especially for depleted elements such as U and Pb. Owing to its small size, the M2 domain could not be accurately dated by the LA-ICP-MS method. However, NanoSIMS isotopic maps reveal that the M2 domain has similar
208
Pb/
232
Th isotope ratios to the M3 domain and thus similar ages. These results support the hypothesis that melt-assisted partial dissolution–precipitation in monazite efficiently records chemical and mineralogical changes during xenolith/lava interaction. |
---|---|
ISSN: | 0010-7999 1432-0967 |
DOI: | 10.1007/s00410-015-1200-1 |