Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling

In the present paper, an approach based on the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model has been developed and applied to study the transformation kinetics of the β phase in Ti-6Al-4V titanium alloy during cooling. To this purpose, Differential Scanning Calorimetry (DSC) tests have been conducted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2016-09, Vol.181, p.462-469
Hauptverfasser: Kherrouba, Nabil, Bouabdallah, Mabrouk, Badji, Riad, Carron, Denis, Amir, Mounir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue
container_start_page 462
container_title Materials chemistry and physics
container_volume 181
creator Kherrouba, Nabil
Bouabdallah, Mabrouk
Badji, Riad
Carron, Denis
Amir, Mounir
description In the present paper, an approach based on the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model has been developed and applied to study the transformation kinetics of the β phase in Ti-6Al-4V titanium alloy during cooling. To this purpose, Differential Scanning Calorimetry (DSC) tests have been conducted using a set of cooling rates ranging from 10 to 50 °C/min. This approach allows the kinetics parameters, particularly the activation energy, to be calculated from a single DSC test using a simple linear regression. The microstructural analysis indicates that the microstructure is dominated by the α Widmanstätten morphology (αW). Microstructural observations along with the calculated values of the Avrami index and of the activation energy suggest that the growth of the αW platelets obeys a mixed mode combining the vanadium diffusion and a displacive mechanism. •The kinetics of the β → α phase transformation is investigated.•An approach is proposed to adapt the KJMA model for continuous cooling.•The model permits the determination of the kinetics parameters for each cooling rate.•The growth of αW plates may obey a combined displacive-diffusional growth mode.•The growth involves shear mechanism and partitioning of vanadium between αW plates.
doi_str_mv 10.1016/j.matchemphys.2016.06.082
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02110742v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058416304965</els_id><sourcerecordid>S0254058416304965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-fb0c45b62b0ff7363811a8970c1358186776ce6d3a92b61e6a9c0f0ab312a49e3</originalsourceid><addsrcrecordid>eNqNUMFKxDAUDKLguvoP8eihNS9p0_a4LuoKC15WryFNU5u1bZYkFfbvTVkRj8LAewwzAzMI3QJJgQC_36eDDKrTw6E7-pRGKiURJT1DCyiLKmEM6DlaEJpnCcnL7BJdeb8nBAoAtkD6QQeJg8WyP3TxcXL0rXUx1NgRf5pRB6M8lmODB6Oc9cFNKkxOY9vinUn4qk-y9-ju7RE3kzPjB1Z2DGac7OTja_tIXaOLVvZe3_zcJXp7etytN8n29fllvdomiuV5SNqaqCyvOa1J2xaMsxJAllVBFLC8hJIXBVeaN0xWtOaguawUaYmsY0eZVZot0d0pt5O9ODgzSHcUVhqxWW3FzBEKQIqMfkHUVift3Mo73f4agIh5W7EXf7YV87aCRJQ0etcnr45lvox2wiujR6Ub47QKorHmHynf60GJcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kherrouba, Nabil ; Bouabdallah, Mabrouk ; Badji, Riad ; Carron, Denis ; Amir, Mounir</creator><creatorcontrib>Kherrouba, Nabil ; Bouabdallah, Mabrouk ; Badji, Riad ; Carron, Denis ; Amir, Mounir</creatorcontrib><description>In the present paper, an approach based on the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model has been developed and applied to study the transformation kinetics of the β phase in Ti-6Al-4V titanium alloy during cooling. To this purpose, Differential Scanning Calorimetry (DSC) tests have been conducted using a set of cooling rates ranging from 10 to 50 °C/min. This approach allows the kinetics parameters, particularly the activation energy, to be calculated from a single DSC test using a simple linear regression. The microstructural analysis indicates that the microstructure is dominated by the α Widmanstätten morphology (αW). Microstructural observations along with the calculated values of the Avrami index and of the activation energy suggest that the growth of the αW platelets obeys a mixed mode combining the vanadium diffusion and a displacive mechanism. •The kinetics of the β → α phase transformation is investigated.•An approach is proposed to adapt the KJMA model for continuous cooling.•The model permits the determination of the kinetics parameters for each cooling rate.•The growth of αW plates may obey a combined displacive-diffusional growth mode.•The growth involves shear mechanism and partitioning of vanadium between αW plates.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2016.06.082</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additivity rule ; Chemical Sciences ; Continuous cooling ; Diffusion ; Displacive mechanism ; Engineering Sciences ; KJMA model ; Material chemistry ; Materials</subject><ispartof>Materials chemistry and physics, 2016-09, Vol.181, p.462-469</ispartof><rights>2016 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-fb0c45b62b0ff7363811a8970c1358186776ce6d3a92b61e6a9c0f0ab312a49e3</citedby><cites>FETCH-LOGICAL-c355t-fb0c45b62b0ff7363811a8970c1358186776ce6d3a92b61e6a9c0f0ab312a49e3</cites><orcidid>0000-0001-9076-5098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2016.06.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02110742$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kherrouba, Nabil</creatorcontrib><creatorcontrib>Bouabdallah, Mabrouk</creatorcontrib><creatorcontrib>Badji, Riad</creatorcontrib><creatorcontrib>Carron, Denis</creatorcontrib><creatorcontrib>Amir, Mounir</creatorcontrib><title>Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling</title><title>Materials chemistry and physics</title><description>In the present paper, an approach based on the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model has been developed and applied to study the transformation kinetics of the β phase in Ti-6Al-4V titanium alloy during cooling. To this purpose, Differential Scanning Calorimetry (DSC) tests have been conducted using a set of cooling rates ranging from 10 to 50 °C/min. This approach allows the kinetics parameters, particularly the activation energy, to be calculated from a single DSC test using a simple linear regression. The microstructural analysis indicates that the microstructure is dominated by the α Widmanstätten morphology (αW). Microstructural observations along with the calculated values of the Avrami index and of the activation energy suggest that the growth of the αW platelets obeys a mixed mode combining the vanadium diffusion and a displacive mechanism. •The kinetics of the β → α phase transformation is investigated.•An approach is proposed to adapt the KJMA model for continuous cooling.•The model permits the determination of the kinetics parameters for each cooling rate.•The growth of αW plates may obey a combined displacive-diffusional growth mode.•The growth involves shear mechanism and partitioning of vanadium between αW plates.</description><subject>Additivity rule</subject><subject>Chemical Sciences</subject><subject>Continuous cooling</subject><subject>Diffusion</subject><subject>Displacive mechanism</subject><subject>Engineering Sciences</subject><subject>KJMA model</subject><subject>Material chemistry</subject><subject>Materials</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMFKxDAUDKLguvoP8eihNS9p0_a4LuoKC15WryFNU5u1bZYkFfbvTVkRj8LAewwzAzMI3QJJgQC_36eDDKrTw6E7-pRGKiURJT1DCyiLKmEM6DlaEJpnCcnL7BJdeb8nBAoAtkD6QQeJg8WyP3TxcXL0rXUx1NgRf5pRB6M8lmODB6Oc9cFNKkxOY9vinUn4qk-y9-ju7RE3kzPjB1Z2DGac7OTja_tIXaOLVvZe3_zcJXp7etytN8n29fllvdomiuV5SNqaqCyvOa1J2xaMsxJAllVBFLC8hJIXBVeaN0xWtOaguawUaYmsY0eZVZot0d0pt5O9ODgzSHcUVhqxWW3FzBEKQIqMfkHUVift3Mo73f4agIh5W7EXf7YV87aCRJQ0etcnr45lvox2wiujR6Ub47QKorHmHynf60GJcA</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Kherrouba, Nabil</creator><creator>Bouabdallah, Mabrouk</creator><creator>Badji, Riad</creator><creator>Carron, Denis</creator><creator>Amir, Mounir</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9076-5098</orcidid></search><sort><creationdate>20160915</creationdate><title>Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling</title><author>Kherrouba, Nabil ; Bouabdallah, Mabrouk ; Badji, Riad ; Carron, Denis ; Amir, Mounir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-fb0c45b62b0ff7363811a8970c1358186776ce6d3a92b61e6a9c0f0ab312a49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additivity rule</topic><topic>Chemical Sciences</topic><topic>Continuous cooling</topic><topic>Diffusion</topic><topic>Displacive mechanism</topic><topic>Engineering Sciences</topic><topic>KJMA model</topic><topic>Material chemistry</topic><topic>Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kherrouba, Nabil</creatorcontrib><creatorcontrib>Bouabdallah, Mabrouk</creatorcontrib><creatorcontrib>Badji, Riad</creatorcontrib><creatorcontrib>Carron, Denis</creatorcontrib><creatorcontrib>Amir, Mounir</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kherrouba, Nabil</au><au>Bouabdallah, Mabrouk</au><au>Badji, Riad</au><au>Carron, Denis</au><au>Amir, Mounir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling</atitle><jtitle>Materials chemistry and physics</jtitle><date>2016-09-15</date><risdate>2016</risdate><volume>181</volume><spage>462</spage><epage>469</epage><pages>462-469</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>In the present paper, an approach based on the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model has been developed and applied to study the transformation kinetics of the β phase in Ti-6Al-4V titanium alloy during cooling. To this purpose, Differential Scanning Calorimetry (DSC) tests have been conducted using a set of cooling rates ranging from 10 to 50 °C/min. This approach allows the kinetics parameters, particularly the activation energy, to be calculated from a single DSC test using a simple linear regression. The microstructural analysis indicates that the microstructure is dominated by the α Widmanstätten morphology (αW). Microstructural observations along with the calculated values of the Avrami index and of the activation energy suggest that the growth of the αW platelets obeys a mixed mode combining the vanadium diffusion and a displacive mechanism. •The kinetics of the β → α phase transformation is investigated.•An approach is proposed to adapt the KJMA model for continuous cooling.•The model permits the determination of the kinetics parameters for each cooling rate.•The growth of αW plates may obey a combined displacive-diffusional growth mode.•The growth involves shear mechanism and partitioning of vanadium between αW plates.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2016.06.082</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9076-5098</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2016-09, Vol.181, p.462-469
issn 0254-0584
1879-3312
language eng
recordid cdi_hal_primary_oai_HAL_hal_02110742v1
source Elsevier ScienceDirect Journals Complete
subjects Additivity rule
Chemical Sciences
Continuous cooling
Diffusion
Displacive mechanism
Engineering Sciences
KJMA model
Material chemistry
Materials
title Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beta%20to%20alpha%20transformation%20kinetics%20and%20microstructure%20of%20Ti-6Al-4V%20alloy%20during%20continuous%20cooling&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Kherrouba,%20Nabil&rft.date=2016-09-15&rft.volume=181&rft.spage=462&rft.epage=469&rft.pages=462-469&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2016.06.082&rft_dat=%3Celsevier_hal_p%3ES0254058416304965%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0254058416304965&rfr_iscdi=true