Persistent homology for object segmentation in multidimensional grayscale images
•Demonstration of the potential of the algebraic topology in performing object segmentation tasks.•New combination between the topological constructions and superpixels of images.•Insensitivity of the proposed method to continuous deformations and stability against perturbations of the input functio...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2018-09, Vol.112, p.277-284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | |
container_start_page | 277 |
container_title | Pattern recognition letters |
container_volume | 112 |
creator | Assaf, Rabih Goupil, Alban Vrabie, Valeriu Boudier, Thomas Kacim, Mohammad |
description | •Demonstration of the potential of the algebraic topology in performing object segmentation tasks.•New combination between the topological constructions and superpixels of images.•Insensitivity of the proposed method to continuous deformations and stability against perturbations of the input function.•Capability to be applied on multidimensional images and to perform object segmentation without the need of prior parameters.
[Display omitted]
In this paper, we develop a methodology originating from algebraic topology, and we demonstrate its capability of performing multidimensional object segmentation without the need of prior parameters. Persistent homology is a method used in algebraic topology to study qualitative features of data that persist across varying scales. The construction of a topological complex on the image is followed by a filtration scheme that consists of composing a nested sequence of cell complexes on which the persistent homology is computed. The most persistent homology classes are extracted by identifying 1D and 2D chains with large lifespans, which allows salient objects in 2D and 3D images to be segmented and detected. A comparison between this method and other segmentation techniques on a synthetic image shows the advantages of the proposed method. The strength of this technique is reflected in its insensitivity to continuous deformations and perturbations of the input function and in its independence of prior parameters. The results obtained on real and biomedical 2D and 3D images also demonstrate the potential of this method. |
doi_str_mv | 10.1016/j.patrec.2018.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02108435v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865518303969</els_id><sourcerecordid>2119938973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-55f320b35dd9573ccca70dce3c965045deacd4f35f1171e0e06c7dff84313cca3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKv_wMOCJw9bJ5vNZvcilKJWKNiDnkOazLZZtk1N0kL_vSkrHoWBgZdv3mQeIfcUJhRo9dRN9ip61JMCaD2BVCAuyIjWosgFK8tLMkqYyOuK82tyE0IHABVr6hFZLtEHGyLuYrZxW9e79Slrnc_cqkMds4DrbXpT0bpdZnfZ9tBHa2zSQlJUn629OgWteszsVq0x3JKrVvUB7377mHy9vnzO5vni4-19Nl3kmlV1zDlvWQErxo1puGBaayXAaGS6qTiU3KDSpmwZbykVFAGh0sK0bV0ymmjFxuRx8N2oXu59Wu5P0ikr59OFPGtQUEg0P9LEPgzs3rvvA4YoO3fw6fdBFpQ2DasbwRJVDpT2LgSP7Z8tBXnOWXZyyFmec5aQCkQaex7GMF17tOhl0BZ3Go1NaJTG2f8NfgBpqIlS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119938973</pqid></control><display><type>article</type><title>Persistent homology for object segmentation in multidimensional grayscale images</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Assaf, Rabih ; Goupil, Alban ; Vrabie, Valeriu ; Boudier, Thomas ; Kacim, Mohammad</creator><creatorcontrib>Assaf, Rabih ; Goupil, Alban ; Vrabie, Valeriu ; Boudier, Thomas ; Kacim, Mohammad</creatorcontrib><description>•Demonstration of the potential of the algebraic topology in performing object segmentation tasks.•New combination between the topological constructions and superpixels of images.•Insensitivity of the proposed method to continuous deformations and stability against perturbations of the input function.•Capability to be applied on multidimensional images and to perform object segmentation without the need of prior parameters.
[Display omitted]
In this paper, we develop a methodology originating from algebraic topology, and we demonstrate its capability of performing multidimensional object segmentation without the need of prior parameters. Persistent homology is a method used in algebraic topology to study qualitative features of data that persist across varying scales. The construction of a topological complex on the image is followed by a filtration scheme that consists of composing a nested sequence of cell complexes on which the persistent homology is computed. The most persistent homology classes are extracted by identifying 1D and 2D chains with large lifespans, which allows salient objects in 2D and 3D images to be segmented and detected. A comparison between this method and other segmentation techniques on a synthetic image shows the advantages of the proposed method. The strength of this technique is reflected in its insensitivity to continuous deformations and perturbations of the input function and in its independence of prior parameters. The results obtained on real and biomedical 2D and 3D images also demonstrate the potential of this method.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2018.08.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algebraic Topology ; Clustering ; Computer Science ; Deformation ; Homology ; Image detection ; Image Processing ; Image processing systems ; Image segmentation ; Mathematics ; Object recognition ; Object segmentation ; Parameters ; Pattern recognition ; Persistent homology ; Qualitative analysis ; Salience ; Signal and Image Processing ; Topology</subject><ispartof>Pattern recognition letters, 2018-09, Vol.112, p.277-284</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-55f320b35dd9573ccca70dce3c965045deacd4f35f1171e0e06c7dff84313cca3</citedby><cites>FETCH-LOGICAL-c368t-55f320b35dd9573ccca70dce3c965045deacd4f35f1171e0e06c7dff84313cca3</cites><orcidid>0000-0003-4249-0207 ; 0000-0003-4308-9968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167865518303969$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02108435$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Assaf, Rabih</creatorcontrib><creatorcontrib>Goupil, Alban</creatorcontrib><creatorcontrib>Vrabie, Valeriu</creatorcontrib><creatorcontrib>Boudier, Thomas</creatorcontrib><creatorcontrib>Kacim, Mohammad</creatorcontrib><title>Persistent homology for object segmentation in multidimensional grayscale images</title><title>Pattern recognition letters</title><description>•Demonstration of the potential of the algebraic topology in performing object segmentation tasks.•New combination between the topological constructions and superpixels of images.•Insensitivity of the proposed method to continuous deformations and stability against perturbations of the input function.•Capability to be applied on multidimensional images and to perform object segmentation without the need of prior parameters.
[Display omitted]
In this paper, we develop a methodology originating from algebraic topology, and we demonstrate its capability of performing multidimensional object segmentation without the need of prior parameters. Persistent homology is a method used in algebraic topology to study qualitative features of data that persist across varying scales. The construction of a topological complex on the image is followed by a filtration scheme that consists of composing a nested sequence of cell complexes on which the persistent homology is computed. The most persistent homology classes are extracted by identifying 1D and 2D chains with large lifespans, which allows salient objects in 2D and 3D images to be segmented and detected. A comparison between this method and other segmentation techniques on a synthetic image shows the advantages of the proposed method. The strength of this technique is reflected in its insensitivity to continuous deformations and perturbations of the input function and in its independence of prior parameters. The results obtained on real and biomedical 2D and 3D images also demonstrate the potential of this method.</description><subject>Algebra</subject><subject>Algebraic Topology</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Deformation</subject><subject>Homology</subject><subject>Image detection</subject><subject>Image Processing</subject><subject>Image processing systems</subject><subject>Image segmentation</subject><subject>Mathematics</subject><subject>Object recognition</subject><subject>Object segmentation</subject><subject>Parameters</subject><subject>Pattern recognition</subject><subject>Persistent homology</subject><subject>Qualitative analysis</subject><subject>Salience</subject><subject>Signal and Image Processing</subject><subject>Topology</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKv_wMOCJw9bJ5vNZvcilKJWKNiDnkOazLZZtk1N0kL_vSkrHoWBgZdv3mQeIfcUJhRo9dRN9ip61JMCaD2BVCAuyIjWosgFK8tLMkqYyOuK82tyE0IHABVr6hFZLtEHGyLuYrZxW9e79Slrnc_cqkMds4DrbXpT0bpdZnfZ9tBHa2zSQlJUn629OgWteszsVq0x3JKrVvUB7377mHy9vnzO5vni4-19Nl3kmlV1zDlvWQErxo1puGBaayXAaGS6qTiU3KDSpmwZbykVFAGh0sK0bV0ymmjFxuRx8N2oXu59Wu5P0ikr59OFPGtQUEg0P9LEPgzs3rvvA4YoO3fw6fdBFpQ2DasbwRJVDpT2LgSP7Z8tBXnOWXZyyFmec5aQCkQaex7GMF17tOhl0BZ3Go1NaJTG2f8NfgBpqIlS</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Assaf, Rabih</creator><creator>Goupil, Alban</creator><creator>Vrabie, Valeriu</creator><creator>Boudier, Thomas</creator><creator>Kacim, Mohammad</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4249-0207</orcidid><orcidid>https://orcid.org/0000-0003-4308-9968</orcidid></search><sort><creationdate>20180901</creationdate><title>Persistent homology for object segmentation in multidimensional grayscale images</title><author>Assaf, Rabih ; Goupil, Alban ; Vrabie, Valeriu ; Boudier, Thomas ; Kacim, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-55f320b35dd9573ccca70dce3c965045deacd4f35f1171e0e06c7dff84313cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algebraic Topology</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Deformation</topic><topic>Homology</topic><topic>Image detection</topic><topic>Image Processing</topic><topic>Image processing systems</topic><topic>Image segmentation</topic><topic>Mathematics</topic><topic>Object recognition</topic><topic>Object segmentation</topic><topic>Parameters</topic><topic>Pattern recognition</topic><topic>Persistent homology</topic><topic>Qualitative analysis</topic><topic>Salience</topic><topic>Signal and Image Processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assaf, Rabih</creatorcontrib><creatorcontrib>Goupil, Alban</creatorcontrib><creatorcontrib>Vrabie, Valeriu</creatorcontrib><creatorcontrib>Boudier, Thomas</creatorcontrib><creatorcontrib>Kacim, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assaf, Rabih</au><au>Goupil, Alban</au><au>Vrabie, Valeriu</au><au>Boudier, Thomas</au><au>Kacim, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent homology for object segmentation in multidimensional grayscale images</atitle><jtitle>Pattern recognition letters</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>112</volume><spage>277</spage><epage>284</epage><pages>277-284</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Demonstration of the potential of the algebraic topology in performing object segmentation tasks.•New combination between the topological constructions and superpixels of images.•Insensitivity of the proposed method to continuous deformations and stability against perturbations of the input function.•Capability to be applied on multidimensional images and to perform object segmentation without the need of prior parameters.
[Display omitted]
In this paper, we develop a methodology originating from algebraic topology, and we demonstrate its capability of performing multidimensional object segmentation without the need of prior parameters. Persistent homology is a method used in algebraic topology to study qualitative features of data that persist across varying scales. The construction of a topological complex on the image is followed by a filtration scheme that consists of composing a nested sequence of cell complexes on which the persistent homology is computed. The most persistent homology classes are extracted by identifying 1D and 2D chains with large lifespans, which allows salient objects in 2D and 3D images to be segmented and detected. A comparison between this method and other segmentation techniques on a synthetic image shows the advantages of the proposed method. The strength of this technique is reflected in its insensitivity to continuous deformations and perturbations of the input function and in its independence of prior parameters. The results obtained on real and biomedical 2D and 3D images also demonstrate the potential of this method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2018.08.007</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4249-0207</orcidid><orcidid>https://orcid.org/0000-0003-4308-9968</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2018-09, Vol.112, p.277-284 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02108435v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algebra Algebraic Topology Clustering Computer Science Deformation Homology Image detection Image Processing Image processing systems Image segmentation Mathematics Object recognition Object segmentation Parameters Pattern recognition Persistent homology Qualitative analysis Salience Signal and Image Processing Topology |
title | Persistent homology for object segmentation in multidimensional grayscale images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20homology%20for%20object%20segmentation%20in%20multidimensional%20grayscale%20images&rft.jtitle=Pattern%20recognition%20letters&rft.au=Assaf,%20Rabih&rft.date=2018-09-01&rft.volume=112&rft.spage=277&rft.epage=284&rft.pages=277-284&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2018.08.007&rft_dat=%3Cproquest_hal_p%3E2119938973%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119938973&rft_id=info:pmid/&rft_els_id=S0167865518303969&rfr_iscdi=true |