Physics of Bubble‐Propelled Microrockets

A popular method to induce synthetic propulsion at the microscale is to use the forces created by surface‐produced gas bubbles inside the asymmetric body of a catalytic swimmer (referred to in the literature as microrocket). Gas bubbles nucleate and grow within the swimmer and migrate toward one of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-06, Vol.28 (25), p.n/a
Hauptverfasser: Gallino, Giacomo, Gallaire, François, Lauga, Eric, Michelin, Sebastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 28
creator Gallino, Giacomo
Gallaire, François
Lauga, Eric
Michelin, Sebastien
description A popular method to induce synthetic propulsion at the microscale is to use the forces created by surface‐produced gas bubbles inside the asymmetric body of a catalytic swimmer (referred to in the literature as microrocket). Gas bubbles nucleate and grow within the swimmer and migrate toward one of its openings due to asymmetric geometric confinement, generating a net hydrodynamic force which propels the device. Here, numerical simulations are used to develop a joint chemical (diffusive) and hydrodynamic (Stokes) analysis of the bubble growth within a conical catalytic microrocket and of the associated bubble and microrocket motion. With this computational model, the bubble dynamics are solved for over one bubble cycle ranging from its nucleation to its exiting the conical rocket, and the propulsion characteristics are identified as a function of all design parameters (geometry and chemical activity of the motor, surface tension, physicochemical constants). The results suggest that hydrodynamics and chemistry partially decouple in the motion of the bubbles, with hydrodynamics determining the distance travelled by the microrocket over each cycle while chemistry sets the bubble ejection frequency. This numerical model allows for the identification of an optimal microrocket shape and size for which the distance travelled per cycle duration is maximized. The motion of bubble‐propelled catalytic microrockets is investigated using numerical simulations. The propulsion characteristics are studied as a function of all design parameters, including geometry and chemical activity of the motor and physicochemical constants. The optimal microrocket shape and size with maximum swimming velocity are also determined.
doi_str_mv 10.1002/adfm.201800686
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02104824v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057166012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4576-6ed19e1bb5f4f210e5605c888cbb8dd1bac8f9259e3766f669d042cbacf2cc603</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFavngueFFJnNslkc6x_aoUWe1DwtmQ3uzQ1detuq_TmR_Az-klMidSjpxkev_eYeYydIvQRgF8WpV30OaAAIEF7rIOEFMXAxf5ux-dDdhTCHACzLE467GI624RKh56zvau1UrX5_vyaerc0dW3K3qTS3nmnX8wqHLMDW9TBnPzOLnsa3j5ej6Lxw9399WAc6STNKCJTYm5QqdQmliOYlCDVQgitlChLVIUWNudpbuKMyBLlJSRcN7LlWhPEXXbe5s6KWi59tSj8RrqikqPBWG41aFITwZN3bNizll1697Y2YSXnbu1fm_MkhzRDIkDeUP2Wap4JwRu7i0WQ2-7ktju5664x5K3ho6rN5h9aDm6Gkz_vD9c8chE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057166012</pqid></control><display><type>article</type><title>Physics of Bubble‐Propelled Microrockets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gallino, Giacomo ; Gallaire, François ; Lauga, Eric ; Michelin, Sebastien</creator><creatorcontrib>Gallino, Giacomo ; Gallaire, François ; Lauga, Eric ; Michelin, Sebastien</creatorcontrib><description>A popular method to induce synthetic propulsion at the microscale is to use the forces created by surface‐produced gas bubbles inside the asymmetric body of a catalytic swimmer (referred to in the literature as microrocket). Gas bubbles nucleate and grow within the swimmer and migrate toward one of its openings due to asymmetric geometric confinement, generating a net hydrodynamic force which propels the device. Here, numerical simulations are used to develop a joint chemical (diffusive) and hydrodynamic (Stokes) analysis of the bubble growth within a conical catalytic microrocket and of the associated bubble and microrocket motion. With this computational model, the bubble dynamics are solved for over one bubble cycle ranging from its nucleation to its exiting the conical rocket, and the propulsion characteristics are identified as a function of all design parameters (geometry and chemical activity of the motor, surface tension, physicochemical constants). The results suggest that hydrodynamics and chemistry partially decouple in the motion of the bubbles, with hydrodynamics determining the distance travelled by the microrocket over each cycle while chemistry sets the bubble ejection frequency. This numerical model allows for the identification of an optimal microrocket shape and size for which the distance travelled per cycle duration is maximized. The motion of bubble‐propelled catalytic microrockets is investigated using numerical simulations. The propulsion characteristics are studied as a function of all design parameters, including geometry and chemical activity of the motor and physicochemical constants. The optimal microrocket shape and size with maximum swimming velocity are also determined.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800686</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bubbles ; Catalysis ; catalytic swimmers ; Chemical activity ; Computational fluid dynamics ; Computer simulation ; Design parameters ; Ejection ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Materials science ; Mathematical models ; Mechanics ; microrockets ; microswimmers ; numerical simulations ; Organic chemistry ; Parameter identification ; Physics ; self‐propulsion ; Surface tension</subject><ispartof>Advanced functional materials, 2018-06, Vol.28 (25), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4576-6ed19e1bb5f4f210e5605c888cbb8dd1bac8f9259e3766f669d042cbacf2cc603</citedby><cites>FETCH-LOGICAL-c4576-6ed19e1bb5f4f210e5605c888cbb8dd1bac8f9259e3766f669d042cbacf2cc603</cites><orcidid>0000-0002-8916-2545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201800686$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201800686$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02104824$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallino, Giacomo</creatorcontrib><creatorcontrib>Gallaire, François</creatorcontrib><creatorcontrib>Lauga, Eric</creatorcontrib><creatorcontrib>Michelin, Sebastien</creatorcontrib><title>Physics of Bubble‐Propelled Microrockets</title><title>Advanced functional materials</title><description>A popular method to induce synthetic propulsion at the microscale is to use the forces created by surface‐produced gas bubbles inside the asymmetric body of a catalytic swimmer (referred to in the literature as microrocket). Gas bubbles nucleate and grow within the swimmer and migrate toward one of its openings due to asymmetric geometric confinement, generating a net hydrodynamic force which propels the device. Here, numerical simulations are used to develop a joint chemical (diffusive) and hydrodynamic (Stokes) analysis of the bubble growth within a conical catalytic microrocket and of the associated bubble and microrocket motion. With this computational model, the bubble dynamics are solved for over one bubble cycle ranging from its nucleation to its exiting the conical rocket, and the propulsion characteristics are identified as a function of all design parameters (geometry and chemical activity of the motor, surface tension, physicochemical constants). The results suggest that hydrodynamics and chemistry partially decouple in the motion of the bubbles, with hydrodynamics determining the distance travelled by the microrocket over each cycle while chemistry sets the bubble ejection frequency. This numerical model allows for the identification of an optimal microrocket shape and size for which the distance travelled per cycle duration is maximized. The motion of bubble‐propelled catalytic microrockets is investigated using numerical simulations. The propulsion characteristics are studied as a function of all design parameters, including geometry and chemical activity of the motor and physicochemical constants. The optimal microrocket shape and size with maximum swimming velocity are also determined.</description><subject>Bubbles</subject><subject>Catalysis</subject><subject>catalytic swimmers</subject><subject>Chemical activity</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Design parameters</subject><subject>Ejection</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>microrockets</subject><subject>microswimmers</subject><subject>numerical simulations</subject><subject>Organic chemistry</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>self‐propulsion</subject><subject>Surface tension</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFavngueFFJnNslkc6x_aoUWe1DwtmQ3uzQ1detuq_TmR_Az-klMidSjpxkev_eYeYydIvQRgF8WpV30OaAAIEF7rIOEFMXAxf5ux-dDdhTCHACzLE467GI624RKh56zvau1UrX5_vyaerc0dW3K3qTS3nmnX8wqHLMDW9TBnPzOLnsa3j5ej6Lxw9399WAc6STNKCJTYm5QqdQmliOYlCDVQgitlChLVIUWNudpbuKMyBLlJSRcN7LlWhPEXXbe5s6KWi59tSj8RrqikqPBWG41aFITwZN3bNizll1697Y2YSXnbu1fm_MkhzRDIkDeUP2Wap4JwRu7i0WQ2-7ktju5664x5K3ho6rN5h9aDm6Gkz_vD9c8chE</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Gallino, Giacomo</creator><creator>Gallaire, François</creator><creator>Lauga, Eric</creator><creator>Michelin, Sebastien</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8916-2545</orcidid></search><sort><creationdate>20180620</creationdate><title>Physics of Bubble‐Propelled Microrockets</title><author>Gallino, Giacomo ; Gallaire, François ; Lauga, Eric ; Michelin, Sebastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4576-6ed19e1bb5f4f210e5605c888cbb8dd1bac8f9259e3766f669d042cbacf2cc603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bubbles</topic><topic>Catalysis</topic><topic>catalytic swimmers</topic><topic>Chemical activity</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Design parameters</topic><topic>Ejection</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>microrockets</topic><topic>microswimmers</topic><topic>numerical simulations</topic><topic>Organic chemistry</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>self‐propulsion</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallino, Giacomo</creatorcontrib><creatorcontrib>Gallaire, François</creatorcontrib><creatorcontrib>Lauga, Eric</creatorcontrib><creatorcontrib>Michelin, Sebastien</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallino, Giacomo</au><au>Gallaire, François</au><au>Lauga, Eric</au><au>Michelin, Sebastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics of Bubble‐Propelled Microrockets</atitle><jtitle>Advanced functional materials</jtitle><date>2018-06-20</date><risdate>2018</risdate><volume>28</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A popular method to induce synthetic propulsion at the microscale is to use the forces created by surface‐produced gas bubbles inside the asymmetric body of a catalytic swimmer (referred to in the literature as microrocket). Gas bubbles nucleate and grow within the swimmer and migrate toward one of its openings due to asymmetric geometric confinement, generating a net hydrodynamic force which propels the device. Here, numerical simulations are used to develop a joint chemical (diffusive) and hydrodynamic (Stokes) analysis of the bubble growth within a conical catalytic microrocket and of the associated bubble and microrocket motion. With this computational model, the bubble dynamics are solved for over one bubble cycle ranging from its nucleation to its exiting the conical rocket, and the propulsion characteristics are identified as a function of all design parameters (geometry and chemical activity of the motor, surface tension, physicochemical constants). The results suggest that hydrodynamics and chemistry partially decouple in the motion of the bubbles, with hydrodynamics determining the distance travelled by the microrocket over each cycle while chemistry sets the bubble ejection frequency. This numerical model allows for the identification of an optimal microrocket shape and size for which the distance travelled per cycle duration is maximized. The motion of bubble‐propelled catalytic microrockets is investigated using numerical simulations. The propulsion characteristics are studied as a function of all design parameters, including geometry and chemical activity of the motor and physicochemical constants. The optimal microrocket shape and size with maximum swimming velocity are also determined.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800686</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8916-2545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-06, Vol.28 (25), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_hal_primary_oai_HAL_hal_02104824v1
source Wiley Online Library Journals Frontfile Complete
subjects Bubbles
Catalysis
catalytic swimmers
Chemical activity
Computational fluid dynamics
Computer simulation
Design parameters
Ejection
Fluid flow
Fluid mechanics
Hydrodynamics
Materials science
Mathematical models
Mechanics
microrockets
microswimmers
numerical simulations
Organic chemistry
Parameter identification
Physics
self‐propulsion
Surface tension
title Physics of Bubble‐Propelled Microrockets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics%20of%20Bubble%E2%80%90Propelled%20Microrockets&rft.jtitle=Advanced%20functional%20materials&rft.au=Gallino,%20Giacomo&rft.date=2018-06-20&rft.volume=28&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800686&rft_dat=%3Cproquest_hal_p%3E2057166012%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057166012&rft_id=info:pmid/&rfr_iscdi=true