Universal pulses: A new concept for calibration‐free parallel transmission

Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2017-02, Vol.77 (2), p.635-643
Hauptverfasser: Gras, Vincent, Vignaud, Alexandre, Amadon, Alexis, Bihan, Denis, Boulant, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 635
container_title Magnetic resonance in medicine
container_volume 77
creator Gras, Vincent
Vignaud, Alexandre
Amadon, Alexis
Bihan, Denis
Boulant, Nicolas
description Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine
doi_str_mv 10.1002/mrm.26148
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02103499v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4305946661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013</originalsourceid><addsrcrecordid>eNqNkctKxDAYhYMoOl4WvoAU3OiimqRJ2rgbxBvMIIizDmn6FyvpxWQ6w-x8BJ_RJzHjeAFBcRVIPr6cw0Fon-ATgjE9rV19QgVh2RoaEE5pTLlk62iAU4bjhEi2hba9f8QYS5myTbRFRZZlgrMBGk2aagbOaxt1vfXgz6Jh1MA8Mm1joJtGZesio22VOz2t2ub1-aV0AFGnnbYWbDR1uvF15X143EUbpQ6SvY9zB00uL-7Pr-PR7dXN-XAUG85kFie0KNKS54ZzTZjIWcgCBApCIMmKXPMCp0mpacqB6xQMLbkuhaEslVzmmCQ76HjlfdBWda6qtVuoVlfqejhSyztMCU6YlLMle7RiO9c-9eCnKoQ1YK1uoO29IpnIEkYEof9AqRDBmizRwx_oY9u7JpRWlGNJCQtp_6LCt1hQLJn4bmNc672D8qsSwWq5rwr7qvd9A3vwYezzGoov8nPQAJyugHllYfG7SY3vxivlGzZkrTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860620946</pqid></control><display><type>article</type><title>Universal pulses: A new concept for calibration‐free parallel transmission</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gras, Vincent ; Vignaud, Alexandre ; Amadon, Alexis ; Bihan, Denis ; Boulant, Nicolas</creator><creatorcontrib>Gras, Vincent ; Vignaud, Alexandre ; Amadon, Alexis ; Bihan, Denis ; Boulant, Nicolas</creatorcontrib><description>Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26148</identifier><identifier>PMID: 26888654</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Algorithms ; Bioengineering ; Brain - anatomy &amp; histology ; Calibration ; Circular polarization ; Engineering Sciences ; Female ; Humans ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Inhomogeneity ; Inversion ; Life Sciences ; Magnetic resonance ; Magnetic Resonance Imaging - methods ; Male ; Neuroimaging ; parallel transmission ; Plug &amp; play ; plug and play ; Radio frequency ; Reproducibility of Results ; RF pulse design ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; Trajectory optimization ; ultra‐high field</subject><ispartof>Magnetic resonance in medicine, 2017-02, Vol.77 (2), p.635-643</ispartof><rights>2016 International Society for Magnetic Resonance in Medicine</rights><rights>2016 International Society for Magnetic Resonance in Medicine.</rights><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013</citedby><cites>FETCH-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013</cites><orcidid>0000-0001-9203-0247 ; 0000-0002-2667-9387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.26148$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.26148$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26888654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02103499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gras, Vincent</creatorcontrib><creatorcontrib>Vignaud, Alexandre</creatorcontrib><creatorcontrib>Amadon, Alexis</creatorcontrib><creatorcontrib>Bihan, Denis</creatorcontrib><creatorcontrib>Boulant, Nicolas</creatorcontrib><title>Universal pulses: A new concept for calibration‐free parallel transmission</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bioengineering</subject><subject>Brain - anatomy &amp; histology</subject><subject>Calibration</subject><subject>Circular polarization</subject><subject>Engineering Sciences</subject><subject>Female</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Inhomogeneity</subject><subject>Inversion</subject><subject>Life Sciences</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neuroimaging</subject><subject>parallel transmission</subject><subject>Plug &amp; play</subject><subject>plug and play</subject><subject>Radio frequency</subject><subject>Reproducibility of Results</subject><subject>RF pulse design</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Trajectory optimization</subject><subject>ultra‐high field</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKxDAYhYMoOl4WvoAU3OiimqRJ2rgbxBvMIIizDmn6FyvpxWQ6w-x8BJ_RJzHjeAFBcRVIPr6cw0Fon-ATgjE9rV19QgVh2RoaEE5pTLlk62iAU4bjhEi2hba9f8QYS5myTbRFRZZlgrMBGk2aagbOaxt1vfXgz6Jh1MA8Mm1joJtGZesio22VOz2t2ub1-aV0AFGnnbYWbDR1uvF15X143EUbpQ6SvY9zB00uL-7Pr-PR7dXN-XAUG85kFie0KNKS54ZzTZjIWcgCBApCIMmKXPMCp0mpacqB6xQMLbkuhaEslVzmmCQ76HjlfdBWda6qtVuoVlfqejhSyztMCU6YlLMle7RiO9c-9eCnKoQ1YK1uoO29IpnIEkYEof9AqRDBmizRwx_oY9u7JpRWlGNJCQtp_6LCt1hQLJn4bmNc672D8qsSwWq5rwr7qvd9A3vwYezzGoov8nPQAJyugHllYfG7SY3vxivlGzZkrTc</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Gras, Vincent</creator><creator>Vignaud, Alexandre</creator><creator>Amadon, Alexis</creator><creator>Bihan, Denis</creator><creator>Boulant, Nicolas</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9203-0247</orcidid><orcidid>https://orcid.org/0000-0002-2667-9387</orcidid></search><sort><creationdate>201702</creationdate><title>Universal pulses: A new concept for calibration‐free parallel transmission</title><author>Gras, Vincent ; Vignaud, Alexandre ; Amadon, Alexis ; Bihan, Denis ; Boulant, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bioengineering</topic><topic>Brain - anatomy &amp; histology</topic><topic>Calibration</topic><topic>Circular polarization</topic><topic>Engineering Sciences</topic><topic>Female</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Inhomogeneity</topic><topic>Inversion</topic><topic>Life Sciences</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neuroimaging</topic><topic>parallel transmission</topic><topic>Plug &amp; play</topic><topic>plug and play</topic><topic>Radio frequency</topic><topic>Reproducibility of Results</topic><topic>RF pulse design</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Trajectory optimization</topic><topic>ultra‐high field</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gras, Vincent</creatorcontrib><creatorcontrib>Vignaud, Alexandre</creatorcontrib><creatorcontrib>Amadon, Alexis</creatorcontrib><creatorcontrib>Bihan, Denis</creatorcontrib><creatorcontrib>Boulant, Nicolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gras, Vincent</au><au>Vignaud, Alexandre</au><au>Amadon, Alexis</au><au>Bihan, Denis</au><au>Boulant, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal pulses: A new concept for calibration‐free parallel transmission</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2017-02</date><risdate>2017</risdate><volume>77</volume><issue>2</issue><spage>635</spage><epage>643</epage><pages>635-643</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26888654</pmid><doi>10.1002/mrm.26148</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9203-0247</orcidid><orcidid>https://orcid.org/0000-0002-2667-9387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2017-02, Vol.77 (2), p.635-643
issn 0740-3194
1522-2594
language eng
recordid cdi_hal_primary_oai_HAL_hal_02103499v1
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Algorithms
Bioengineering
Brain - anatomy & histology
Calibration
Circular polarization
Engineering Sciences
Female
Humans
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Inhomogeneity
Inversion
Life Sciences
Magnetic resonance
Magnetic Resonance Imaging - methods
Male
Neuroimaging
parallel transmission
Plug & play
plug and play
Radio frequency
Reproducibility of Results
RF pulse design
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Trajectory optimization
ultra‐high field
title Universal pulses: A new concept for calibration‐free parallel transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20pulses:%20A%20new%20concept%20for%20calibration%E2%80%90free%20parallel%20transmission&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Gras,%20Vincent&rft.date=2017-02&rft.volume=77&rft.issue=2&rft.spage=635&rft.epage=643&rft.pages=635-643&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.26148&rft_dat=%3Cproquest_hal_p%3E4305946661%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860620946&rft_id=info:pmid/26888654&rfr_iscdi=true