Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system

Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-04
Hauptverfasser: Lepoutre, S., Schachenmayer, J., Gabardos, L., Zhu, B., Naylor, B., Maréchal, E., Gorceix, O., Rey, A. M., Vernac, L., Laburthe-Tolra, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature communications
container_volume
creator Lepoutre, S.
Schachenmayer, J.
Gabardos, L.
Zhu, B.
Naylor, B.
Maréchal, E.
Gorceix, O.
Rey, A. M.
Vernac, L.
Laburthe-Tolra, B.
description Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02102570v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02102570v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_02102570v13</originalsourceid><addsrcrecordid>eNqVisGKwjAURcOgoDj9h7d1EUjaDtXlMCguXLovT5vqk-SlJulg5-unggu33s25HM6HmOeq1FJXeTF5-TORxXhV44q1XpXlXPDm3lkfiM_g-yR9K82tJ0vHQL2DW4-cRjo8s0kUHSA3kC4mOLT0h4k8AzEgxI5YFmPIgzz6ZoCGOm8xgMWU6GQgDjEZ9ymmLdposicXYrndHH528oK27gI5DEPtkerd975-OJVrlX9V6lcX77T_JEhQdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Lepoutre, S. ; Schachenmayer, J. ; Gabardos, L. ; Zhu, B. ; Naylor, B. ; Maréchal, E. ; Gorceix, O. ; Rey, A. M. ; Vernac, L. ; Laburthe-Tolra, B.</creator><creatorcontrib>Lepoutre, S. ; Schachenmayer, J. ; Gabardos, L. ; Zhu, B. ; Naylor, B. ; Maréchal, E. ; Gorceix, O. ; Rey, A. M. ; Vernac, L. ; Laburthe-Tolra, B.</creatorcontrib><description>Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Condensed Matter ; Physics ; Quantum Gases ; Quantum Physics</subject><ispartof>Nature communications, 2019-04</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9420-5768 ; 0000-0002-5267-7334 ; 0000-0001-9420-5768 ; 0000-0002-5267-7334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02102570$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepoutre, S.</creatorcontrib><creatorcontrib>Schachenmayer, J.</creatorcontrib><creatorcontrib>Gabardos, L.</creatorcontrib><creatorcontrib>Zhu, B.</creatorcontrib><creatorcontrib>Naylor, B.</creatorcontrib><creatorcontrib>Maréchal, E.</creatorcontrib><creatorcontrib>Gorceix, O.</creatorcontrib><creatorcontrib>Rey, A. M.</creatorcontrib><creatorcontrib>Vernac, L.</creatorcontrib><creatorcontrib>Laburthe-Tolra, B.</creatorcontrib><title>Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system</title><title>Nature communications</title><description>Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>Quantum Physics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqVisGKwjAURcOgoDj9h7d1EUjaDtXlMCguXLovT5vqk-SlJulg5-unggu33s25HM6HmOeq1FJXeTF5-TORxXhV44q1XpXlXPDm3lkfiM_g-yR9K82tJ0vHQL2DW4-cRjo8s0kUHSA3kC4mOLT0h4k8AzEgxI5YFmPIgzz6ZoCGOm8xgMWU6GQgDjEZ9ymmLdposicXYrndHH528oK27gI5DEPtkerd975-OJVrlX9V6lcX77T_JEhQdA</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Lepoutre, S.</creator><creator>Schachenmayer, J.</creator><creator>Gabardos, L.</creator><creator>Zhu, B.</creator><creator>Naylor, B.</creator><creator>Maréchal, E.</creator><creator>Gorceix, O.</creator><creator>Rey, A. M.</creator><creator>Vernac, L.</creator><creator>Laburthe-Tolra, B.</creator><general>Nature Publishing Group</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9420-5768</orcidid><orcidid>https://orcid.org/0000-0002-5267-7334</orcidid><orcidid>https://orcid.org/0000-0001-9420-5768</orcidid><orcidid>https://orcid.org/0000-0002-5267-7334</orcidid></search><sort><creationdate>20190412</creationdate><title>Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system</title><author>Lepoutre, S. ; Schachenmayer, J. ; Gabardos, L. ; Zhu, B. ; Naylor, B. ; Maréchal, E. ; Gorceix, O. ; Rey, A. M. ; Vernac, L. ; Laburthe-Tolra, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_02102570v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepoutre, S.</creatorcontrib><creatorcontrib>Schachenmayer, J.</creatorcontrib><creatorcontrib>Gabardos, L.</creatorcontrib><creatorcontrib>Zhu, B.</creatorcontrib><creatorcontrib>Naylor, B.</creatorcontrib><creatorcontrib>Maréchal, E.</creatorcontrib><creatorcontrib>Gorceix, O.</creatorcontrib><creatorcontrib>Rey, A. M.</creatorcontrib><creatorcontrib>Vernac, L.</creatorcontrib><creatorcontrib>Laburthe-Tolra, B.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepoutre, S.</au><au>Schachenmayer, J.</au><au>Gabardos, L.</au><au>Zhu, B.</au><au>Naylor, B.</au><au>Maréchal, E.</au><au>Gorceix, O.</au><au>Rey, A. M.</au><au>Vernac, L.</au><au>Laburthe-Tolra, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system</atitle><jtitle>Nature communications</jtitle><date>2019-04-12</date><risdate>2019</risdate><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.</abstract><pub>Nature Publishing Group</pub><orcidid>https://orcid.org/0000-0001-9420-5768</orcidid><orcidid>https://orcid.org/0000-0002-5267-7334</orcidid><orcidid>https://orcid.org/0000-0001-9420-5768</orcidid><orcidid>https://orcid.org/0000-0002-5267-7334</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-04
issn 2041-1723
2041-1723
language eng
recordid cdi_hal_primary_oai_HAL_hal_02102570v1
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Condensed Matter
Physics
Quantum Gases
Quantum Physics
title Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20out-of-equilibrium%20quantum%20magnetism%20and%20thermalization%20in%20a%20spin-3%20many-body%20dipolar%20lattice%20system&rft.jtitle=Nature%20communications&rft.au=Lepoutre,%20S.&rft.date=2019-04-12&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_02102570v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true