Modelling of local length‐scale dynamics and isotropizing deformations
The correlation length‐scale which characterizes the shape of the correlation function is often used to parametrize correlation models. This article describes how the length‐scale dynamics can be employed to estimate a spatial deformation (coordinate transformation). Of particular interest is the is...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of the Royal Meteorological Society 2014-04, Vol.140 (681), p.1387-1398 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1398 |
---|---|
container_issue | 681 |
container_start_page | 1387 |
container_title | Quarterly journal of the Royal Meteorological Society |
container_volume | 140 |
creator | Pannekoucke, O. Emili, E. Thual, O. |
description | The correlation length‐scale which characterizes the shape of the correlation function is often used to parametrize correlation models. This article describes how the length‐scale dynamics can be employed to estimate a spatial deformation (coordinate transformation). Of particular interest is the isotropizing deformation, which transforms anisotropic correlation functions into quasi‐isotropic ones. The evolution of the length‐scale field under a simple advection dynamics is described in terms of the local metric tensor. This description leads to a quadratic constraint satisfied by the isotropizing deformation and from which a system of Poisson‐like partial differential equations is deduced. The isotropizing deformation is obtained as the solution of a coupled system of Poisson‐like partial differential equations. This system is then solved with a pseudo‐diffusion scheme, where the isotropizing deformation is the steady‐state solution. The isotropization process is illustrated within a simulated 2D setting. The method is shown to provide an accurate estimation of the original deformation used to build the anisotropic correlations in this idealized framework.
Applications in data assimilation are discussed. First, the isotropization procedure can be useful for background‐error covariance modelling. Secondly, the length‐scale dynamics provides a way to simulate the dynamics of covariances for the transport of passive scalars, as encountered in chemical data assimilation. |
doi_str_mv | 10.1002/qj.2204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02101388v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3402469421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4194-4f518bea1cc725ccd7b303e1118c1acce15b1ec7e162ca6c455872bcefe862c73</originalsourceid><addsrcrecordid>eNp10NFKHDEUBuBQWuhWpa8wUIoVGT0nk0xmL0XUVbaI0ELvQvZMZs0yO9lNdivrlY_gM_ZJzLiLF0KvQg5ffnJ-xr4inCAAP13OTjgH8YENUCiVVwr-fGQDgELmQ4DhZ_YlxhkASMXVgI1--tq2reummW-y1pNps9Z209X9v6fnmG42qzedmTuKmenqzEW_Cn7hHvsXtW18mJuV813cZ58a00Z7sDv32O_Li1_no3x8e3V9fjbOSeBQ5KKRWE2sQSLFJVGtJgUUFhErQkNkUU7QkrJYcjIlCSkrxSdkG1uliSr22NE29960ehHc3ISN9sbp0dlY9zPgCFhU1V9M9sfWLoJfrm1c6bmLlNY1nfXrqFEK4LyUQiT67R2d-XXo0iZJyQJL5GWvDreKgo8x2ObtBwi6b18vZ7pvP8nvuzzTt9gE05GLb5xXkksoZXLHW_fgWrv5X5y-u3lNfQEdqpF7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553161264</pqid></control><display><type>article</type><title>Modelling of local length‐scale dynamics and isotropizing deformations</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Pannekoucke, O. ; Emili, E. ; Thual, O.</creator><creatorcontrib>Pannekoucke, O. ; Emili, E. ; Thual, O.</creatorcontrib><description>The correlation length‐scale which characterizes the shape of the correlation function is often used to parametrize correlation models. This article describes how the length‐scale dynamics can be employed to estimate a spatial deformation (coordinate transformation). Of particular interest is the isotropizing deformation, which transforms anisotropic correlation functions into quasi‐isotropic ones. The evolution of the length‐scale field under a simple advection dynamics is described in terms of the local metric tensor. This description leads to a quadratic constraint satisfied by the isotropizing deformation and from which a system of Poisson‐like partial differential equations is deduced. The isotropizing deformation is obtained as the solution of a coupled system of Poisson‐like partial differential equations. This system is then solved with a pseudo‐diffusion scheme, where the isotropizing deformation is the steady‐state solution. The isotropization process is illustrated within a simulated 2D setting. The method is shown to provide an accurate estimation of the original deformation used to build the anisotropic correlations in this idealized framework.
Applications in data assimilation are discussed. First, the isotropization procedure can be useful for background‐error covariance modelling. Secondly, the length‐scale dynamics provides a way to simulate the dynamics of covariances for the transport of passive scalars, as encountered in chemical data assimilation.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.2204</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>covariance modelling ; Data assimilation ; Deformation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid mechanics ; isotropization ; length‐scale dynamics ; Mechanics ; Meteorology ; Physics ; Physics of the high neutral atmosphere</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2014-04, Vol.140 (681), p.1387-1398</ispartof><rights>2013 Royal Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>2014 Royal Meteorological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4194-4f518bea1cc725ccd7b303e1118c1acce15b1ec7e162ca6c455872bcefe862c73</citedby><cites>FETCH-LOGICAL-c4194-4f518bea1cc725ccd7b303e1118c1acce15b1ec7e162ca6c455872bcefe862c73</cites><orcidid>0000-0002-1777-9415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.2204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.2204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28525065$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02101388$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pannekoucke, O.</creatorcontrib><creatorcontrib>Emili, E.</creatorcontrib><creatorcontrib>Thual, O.</creatorcontrib><title>Modelling of local length‐scale dynamics and isotropizing deformations</title><title>Quarterly journal of the Royal Meteorological Society</title><description>The correlation length‐scale which characterizes the shape of the correlation function is often used to parametrize correlation models. This article describes how the length‐scale dynamics can be employed to estimate a spatial deformation (coordinate transformation). Of particular interest is the isotropizing deformation, which transforms anisotropic correlation functions into quasi‐isotropic ones. The evolution of the length‐scale field under a simple advection dynamics is described in terms of the local metric tensor. This description leads to a quadratic constraint satisfied by the isotropizing deformation and from which a system of Poisson‐like partial differential equations is deduced. The isotropizing deformation is obtained as the solution of a coupled system of Poisson‐like partial differential equations. This system is then solved with a pseudo‐diffusion scheme, where the isotropizing deformation is the steady‐state solution. The isotropization process is illustrated within a simulated 2D setting. The method is shown to provide an accurate estimation of the original deformation used to build the anisotropic correlations in this idealized framework.
Applications in data assimilation are discussed. First, the isotropization procedure can be useful for background‐error covariance modelling. Secondly, the length‐scale dynamics provides a way to simulate the dynamics of covariances for the transport of passive scalars, as encountered in chemical data assimilation.</description><subject>covariance modelling</subject><subject>Data assimilation</subject><subject>Deformation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid mechanics</subject><subject>isotropization</subject><subject>length‐scale dynamics</subject><subject>Mechanics</subject><subject>Meteorology</subject><subject>Physics</subject><subject>Physics of the high neutral atmosphere</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10NFKHDEUBuBQWuhWpa8wUIoVGT0nk0xmL0XUVbaI0ELvQvZMZs0yO9lNdivrlY_gM_ZJzLiLF0KvQg5ffnJ-xr4inCAAP13OTjgH8YENUCiVVwr-fGQDgELmQ4DhZ_YlxhkASMXVgI1--tq2reummW-y1pNps9Z209X9v6fnmG42qzedmTuKmenqzEW_Cn7hHvsXtW18mJuV813cZ58a00Z7sDv32O_Li1_no3x8e3V9fjbOSeBQ5KKRWE2sQSLFJVGtJgUUFhErQkNkUU7QkrJYcjIlCSkrxSdkG1uliSr22NE29960ehHc3ISN9sbp0dlY9zPgCFhU1V9M9sfWLoJfrm1c6bmLlNY1nfXrqFEK4LyUQiT67R2d-XXo0iZJyQJL5GWvDreKgo8x2ObtBwi6b18vZ7pvP8nvuzzTt9gE05GLb5xXkksoZXLHW_fgWrv5X5y-u3lNfQEdqpF7</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Pannekoucke, O.</creator><creator>Emili, E.</creator><creator>Thual, O.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1777-9415</orcidid></search><sort><creationdate>201404</creationdate><title>Modelling of local length‐scale dynamics and isotropizing deformations</title><author>Pannekoucke, O. ; Emili, E. ; Thual, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4194-4f518bea1cc725ccd7b303e1118c1acce15b1ec7e162ca6c455872bcefe862c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>covariance modelling</topic><topic>Data assimilation</topic><topic>Deformation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid mechanics</topic><topic>isotropization</topic><topic>length‐scale dynamics</topic><topic>Mechanics</topic><topic>Meteorology</topic><topic>Physics</topic><topic>Physics of the high neutral atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pannekoucke, O.</creatorcontrib><creatorcontrib>Emili, E.</creatorcontrib><creatorcontrib>Thual, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pannekoucke, O.</au><au>Emili, E.</au><au>Thual, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of local length‐scale dynamics and isotropizing deformations</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2014-04</date><risdate>2014</risdate><volume>140</volume><issue>681</issue><spage>1387</spage><epage>1398</epage><pages>1387-1398</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>The correlation length‐scale which characterizes the shape of the correlation function is often used to parametrize correlation models. This article describes how the length‐scale dynamics can be employed to estimate a spatial deformation (coordinate transformation). Of particular interest is the isotropizing deformation, which transforms anisotropic correlation functions into quasi‐isotropic ones. The evolution of the length‐scale field under a simple advection dynamics is described in terms of the local metric tensor. This description leads to a quadratic constraint satisfied by the isotropizing deformation and from which a system of Poisson‐like partial differential equations is deduced. The isotropizing deformation is obtained as the solution of a coupled system of Poisson‐like partial differential equations. This system is then solved with a pseudo‐diffusion scheme, where the isotropizing deformation is the steady‐state solution. The isotropization process is illustrated within a simulated 2D setting. The method is shown to provide an accurate estimation of the original deformation used to build the anisotropic correlations in this idealized framework.
Applications in data assimilation are discussed. First, the isotropization procedure can be useful for background‐error covariance modelling. Secondly, the length‐scale dynamics provides a way to simulate the dynamics of covariances for the transport of passive scalars, as encountered in chemical data assimilation.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qj.2204</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1777-9415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9009 |
ispartof | Quarterly journal of the Royal Meteorological Society, 2014-04, Vol.140 (681), p.1387-1398 |
issn | 0035-9009 1477-870X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02101388v1 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | covariance modelling Data assimilation Deformation Earth, ocean, space Exact sciences and technology External geophysics Fluid mechanics isotropization length‐scale dynamics Mechanics Meteorology Physics Physics of the high neutral atmosphere |
title | Modelling of local length‐scale dynamics and isotropizing deformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20local%20length%E2%80%90scale%20dynamics%20and%20isotropizing%20deformations&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Pannekoucke,%20O.&rft.date=2014-04&rft.volume=140&rft.issue=681&rft.spage=1387&rft.epage=1398&rft.pages=1387-1398&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.2204&rft_dat=%3Cproquest_hal_p%3E3402469421%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553161264&rft_id=info:pmid/&rfr_iscdi=true |