Cartan connections and Atiyah Lie algebroids
This work extends both classical results on Atiyah Lie algebroids and previous developments carried out by some of the authors on Ehresmann connections on Atiyah Lie algebroids in their algebraic version. In this paper, we study Cartan connections in a framework relying on two Atiyah Lie algebroids...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2020-02, Vol.148, p.103541, Article 103541 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103541 |
container_title | Journal of geometry and physics |
container_volume | 148 |
creator | Attard, J. François, J. Lazzarini, S. Masson, T. |
description | This work extends both classical results on Atiyah Lie algebroids and previous developments carried out by some of the authors on Ehresmann connections on Atiyah Lie algebroids in their algebraic version. In this paper, we study Cartan connections in a framework relying on two Atiyah Lie algebroids based on a H-principal fiber bundle P and its associated G-principal fiber bundle Q≔P×HG, where H⊂G defines the model for a Cartan geometry. Completion of a known commutative and exact diagram relating these two Atiyah Lie algebroids allows to completely characterize Cartan connections on P as a fresh standpoint. Furthermore, in the context of gravity and mixed anomalies, our construction answers a long standing mathematical question about the correct geometrico-algebraic setting in which to combine inner gauge transformations and infinitesimal diffeomorphisms. |
doi_str_mv | 10.1016/j.geomphys.2019.103541 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02097864v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0393044019302220</els_id><sourcerecordid>oai_HAL_hal_02097864v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-620299a59c90b7ae08004ae651e9749f898f0f38c26f2c6a72a58554bc5cdc003</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKd_Qfoq2HmTJmnyZhnqhIIv-hzu0nTL2JqRlEH_vR1VX326cDjfgfsRck9hQYHKp91i48LhuB3SggHVY1gITi_IjKpS51RKdklmUOgiB87hmtyktAMAyTWdkcclxh67zIauc7b3oUsZdk1W9X7AbVZ7l-F-49Yx-CbdkqsW98nd_dw5-Xp9-Vyu8vrj7X1Z1bktNO9zyYBpjUJbDesSHSgAjk4K6nTJdau0aqEtlGWyZVZiyVAoIfjaCttYgGJOHqbdLe7NMfoDxsEE9GZV1eacAQNdKslPdOzKqWtjSCm69g-gYM5-zM78-jFnP2byM4LPE-jGT07eRZOsd511jY-jCdME_9_ENx_Db98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cartan connections and Atiyah Lie algebroids</title><source>Elsevier ScienceDirect Journals</source><creator>Attard, J. ; François, J. ; Lazzarini, S. ; Masson, T.</creator><creatorcontrib>Attard, J. ; François, J. ; Lazzarini, S. ; Masson, T.</creatorcontrib><description>This work extends both classical results on Atiyah Lie algebroids and previous developments carried out by some of the authors on Ehresmann connections on Atiyah Lie algebroids in their algebraic version. In this paper, we study Cartan connections in a framework relying on two Atiyah Lie algebroids based on a H-principal fiber bundle P and its associated G-principal fiber bundle Q≔P×HG, where H⊂G defines the model for a Cartan geometry. Completion of a known commutative and exact diagram relating these two Atiyah Lie algebroids allows to completely characterize Cartan connections on P as a fresh standpoint. Furthermore, in the context of gravity and mixed anomalies, our construction answers a long standing mathematical question about the correct geometrico-algebraic setting in which to combine inner gauge transformations and infinitesimal diffeomorphisms.</description><identifier>ISSN: 0393-0440</identifier><identifier>EISSN: 1879-1662</identifier><identifier>DOI: 10.1016/j.geomphys.2019.103541</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anomalies ; Cartan connection ; Diffeomorphisms ; Gauge transformations ; Gravity ; Lie algebroid ; Mathematical Physics ; Physics</subject><ispartof>Journal of geometry and physics, 2020-02, Vol.148, p.103541, Article 103541</ispartof><rights>2019 Elsevier B.V.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-620299a59c90b7ae08004ae651e9749f898f0f38c26f2c6a72a58554bc5cdc003</citedby><cites>FETCH-LOGICAL-c394t-620299a59c90b7ae08004ae651e9749f898f0f38c26f2c6a72a58554bc5cdc003</cites><orcidid>0000-0002-3808-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0393044019302220$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02097864$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Attard, J.</creatorcontrib><creatorcontrib>François, J.</creatorcontrib><creatorcontrib>Lazzarini, S.</creatorcontrib><creatorcontrib>Masson, T.</creatorcontrib><title>Cartan connections and Atiyah Lie algebroids</title><title>Journal of geometry and physics</title><description>This work extends both classical results on Atiyah Lie algebroids and previous developments carried out by some of the authors on Ehresmann connections on Atiyah Lie algebroids in their algebraic version. In this paper, we study Cartan connections in a framework relying on two Atiyah Lie algebroids based on a H-principal fiber bundle P and its associated G-principal fiber bundle Q≔P×HG, where H⊂G defines the model for a Cartan geometry. Completion of a known commutative and exact diagram relating these two Atiyah Lie algebroids allows to completely characterize Cartan connections on P as a fresh standpoint. Furthermore, in the context of gravity and mixed anomalies, our construction answers a long standing mathematical question about the correct geometrico-algebraic setting in which to combine inner gauge transformations and infinitesimal diffeomorphisms.</description><subject>Anomalies</subject><subject>Cartan connection</subject><subject>Diffeomorphisms</subject><subject>Gauge transformations</subject><subject>Gravity</subject><subject>Lie algebroid</subject><subject>Mathematical Physics</subject><subject>Physics</subject><issn>0393-0440</issn><issn>1879-1662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKd_Qfoq2HmTJmnyZhnqhIIv-hzu0nTL2JqRlEH_vR1VX326cDjfgfsRck9hQYHKp91i48LhuB3SggHVY1gITi_IjKpS51RKdklmUOgiB87hmtyktAMAyTWdkcclxh67zIauc7b3oUsZdk1W9X7AbVZ7l-F-49Yx-CbdkqsW98nd_dw5-Xp9-Vyu8vrj7X1Z1bktNO9zyYBpjUJbDesSHSgAjk4K6nTJdau0aqEtlGWyZVZiyVAoIfjaCttYgGJOHqbdLe7NMfoDxsEE9GZV1eacAQNdKslPdOzKqWtjSCm69g-gYM5-zM78-jFnP2byM4LPE-jGT07eRZOsd511jY-jCdME_9_ENx_Db98</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Attard, J.</creator><creator>François, J.</creator><creator>Lazzarini, S.</creator><creator>Masson, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3808-6343</orcidid></search><sort><creationdate>202002</creationdate><title>Cartan connections and Atiyah Lie algebroids</title><author>Attard, J. ; François, J. ; Lazzarini, S. ; Masson, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-620299a59c90b7ae08004ae651e9749f898f0f38c26f2c6a72a58554bc5cdc003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Cartan connection</topic><topic>Diffeomorphisms</topic><topic>Gauge transformations</topic><topic>Gravity</topic><topic>Lie algebroid</topic><topic>Mathematical Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attard, J.</creatorcontrib><creatorcontrib>François, J.</creatorcontrib><creatorcontrib>Lazzarini, S.</creatorcontrib><creatorcontrib>Masson, T.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geometry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attard, J.</au><au>François, J.</au><au>Lazzarini, S.</au><au>Masson, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cartan connections and Atiyah Lie algebroids</atitle><jtitle>Journal of geometry and physics</jtitle><date>2020-02</date><risdate>2020</risdate><volume>148</volume><spage>103541</spage><pages>103541-</pages><artnum>103541</artnum><issn>0393-0440</issn><eissn>1879-1662</eissn><abstract>This work extends both classical results on Atiyah Lie algebroids and previous developments carried out by some of the authors on Ehresmann connections on Atiyah Lie algebroids in their algebraic version. In this paper, we study Cartan connections in a framework relying on two Atiyah Lie algebroids based on a H-principal fiber bundle P and its associated G-principal fiber bundle Q≔P×HG, where H⊂G defines the model for a Cartan geometry. Completion of a known commutative and exact diagram relating these two Atiyah Lie algebroids allows to completely characterize Cartan connections on P as a fresh standpoint. Furthermore, in the context of gravity and mixed anomalies, our construction answers a long standing mathematical question about the correct geometrico-algebraic setting in which to combine inner gauge transformations and infinitesimal diffeomorphisms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.geomphys.2019.103541</doi><orcidid>https://orcid.org/0000-0002-3808-6343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0393-0440 |
ispartof | Journal of geometry and physics, 2020-02, Vol.148, p.103541, Article 103541 |
issn | 0393-0440 1879-1662 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02097864v1 |
source | Elsevier ScienceDirect Journals |
subjects | Anomalies Cartan connection Diffeomorphisms Gauge transformations Gravity Lie algebroid Mathematical Physics Physics |
title | Cartan connections and Atiyah Lie algebroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cartan%20connections%20and%20Atiyah%20Lie%20algebroids&rft.jtitle=Journal%20of%20geometry%20and%20physics&rft.au=Attard,%20J.&rft.date=2020-02&rft.volume=148&rft.spage=103541&rft.pages=103541-&rft.artnum=103541&rft.issn=0393-0440&rft.eissn=1879-1662&rft_id=info:doi/10.1016/j.geomphys.2019.103541&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02097864v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0393044019302220&rfr_iscdi=true |