A modified iterated projection method adapted to a nonlinear integral equation

The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2016-03, Vol.276, p.432-441
Hauptverfasser: Grammont, Laurence, Vasconcelos, Paulo B., Ahues, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue
container_start_page 432
container_title Applied mathematics and computation
container_volume 276
creator Grammont, Laurence
Vasconcelos, Paulo B.
Ahues, Mario
description The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.
doi_str_mv 10.1016/j.amc.2015.12.019
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02094362v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300315300072</els_id><sourcerecordid>1793251375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVooNs0P6A3H9uDHX3boqcltE1gaS_NWcxK46wW29qVvIH--8i45JjTDDPPOzAPIV8YbRhl-u7YwOgaTplqGG8oM1dkw7pW1EpL84FsKDW6FpSKj-RTzkdKaauZ3JDf22qMPvQBfRVmTDCX5pTiEd0c4lSNOB-ir8DDadnMsYJqitMQJoRUhWnG5wRDhecLLPxnct3DkPH2f70hTz9__L1_qHd_fj3eb3e1E1rONXSqF5K1Hd-LThgUeyNkJ0Trdbfngsu-g16x3hjXgZNeG-W90kCVp7qXRtyQb-vdAwz2lMII6Z-NEOzDdmeXGeXUSKH5Cyvs15Utb50vmGc7huxwGGDCeMmWtUZwxUSrCspW1KWYc8L-7TajdvFsj7Z4totny7gtnkvm-5rB8u9LwGSzCzg59CEVidbH8E76FZt4hCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793251375</pqid></control><display><type>article</type><title>A modified iterated projection method adapted to a nonlinear integral equation</title><source>Elsevier ScienceDirect Journals</source><creator>Grammont, Laurence ; Vasconcelos, Paulo B. ; Ahues, Mario</creator><creatorcontrib>Grammont, Laurence ; Vasconcelos, Paulo B. ; Ahues, Mario</creatorcontrib><description>The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2015.12.019</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accuracy ; Approximation ; Discretization ; Integral equations ; Iterated projection approximation ; Mathematical analysis ; Mathematical models ; Mathematics ; Newton-like methods ; Nonlinear equations ; Nonlinearity ; Numerical Analysis ; Projection</subject><ispartof>Applied mathematics and computation, 2016-03, Vol.276, p.432-441</ispartof><rights>2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</citedby><cites>FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</cites><orcidid>0000-0002-7132-880X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300315300072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02094362$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Vasconcelos, Paulo B.</creatorcontrib><creatorcontrib>Ahues, Mario</creatorcontrib><title>A modified iterated projection method adapted to a nonlinear integral equation</title><title>Applied mathematics and computation</title><description>The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Discretization</subject><subject>Integral equations</subject><subject>Iterated projection approximation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Newton-like methods</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Projection</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVooNs0P6A3H9uDHX3boqcltE1gaS_NWcxK46wW29qVvIH--8i45JjTDDPPOzAPIV8YbRhl-u7YwOgaTplqGG8oM1dkw7pW1EpL84FsKDW6FpSKj-RTzkdKaauZ3JDf22qMPvQBfRVmTDCX5pTiEd0c4lSNOB-ir8DDadnMsYJqitMQJoRUhWnG5wRDhecLLPxnct3DkPH2f70hTz9__L1_qHd_fj3eb3e1E1rONXSqF5K1Hd-LThgUeyNkJ0Trdbfngsu-g16x3hjXgZNeG-W90kCVp7qXRtyQb-vdAwz2lMII6Z-NEOzDdmeXGeXUSKH5Cyvs15Utb50vmGc7huxwGGDCeMmWtUZwxUSrCspW1KWYc8L-7TajdvFsj7Z4totny7gtnkvm-5rB8u9LwGSzCzg59CEVidbH8E76FZt4hCk</recordid><startdate>20160305</startdate><enddate>20160305</enddate><creator>Grammont, Laurence</creator><creator>Vasconcelos, Paulo B.</creator><creator>Ahues, Mario</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7132-880X</orcidid></search><sort><creationdate>20160305</creationdate><title>A modified iterated projection method adapted to a nonlinear integral equation</title><author>Grammont, Laurence ; Vasconcelos, Paulo B. ; Ahues, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Discretization</topic><topic>Integral equations</topic><topic>Iterated projection approximation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Newton-like methods</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Vasconcelos, Paulo B.</creatorcontrib><creatorcontrib>Ahues, Mario</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammont, Laurence</au><au>Vasconcelos, Paulo B.</au><au>Ahues, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified iterated projection method adapted to a nonlinear integral equation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-03-05</date><risdate>2016</risdate><volume>276</volume><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2015.12.019</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7132-880X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2016-03, Vol.276, p.432-441
issn 0096-3003
1873-5649
language eng
recordid cdi_hal_primary_oai_HAL_hal_02094362v1
source Elsevier ScienceDirect Journals
subjects Accuracy
Approximation
Discretization
Integral equations
Iterated projection approximation
Mathematical analysis
Mathematical models
Mathematics
Newton-like methods
Nonlinear equations
Nonlinearity
Numerical Analysis
Projection
title A modified iterated projection method adapted to a nonlinear integral equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20iterated%20projection%20method%20adapted%20to%20a%20nonlinear%20integral%20equation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Grammont,%20Laurence&rft.date=2016-03-05&rft.volume=276&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2015.12.019&rft_dat=%3Cproquest_hal_p%3E1793251375%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793251375&rft_id=info:pmid/&rft_els_id=S0096300315300072&rfr_iscdi=true