A modified iterated projection method adapted to a nonlinear integral equation
The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the ac...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2016-03, Vol.276, p.432-441 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | |
container_start_page | 432 |
container_title | Applied mathematics and computation |
container_volume | 276 |
creator | Grammont, Laurence Vasconcelos, Paulo B. Ahues, Mario |
description | The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result. |
doi_str_mv | 10.1016/j.amc.2015.12.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02094362v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300315300072</els_id><sourcerecordid>1793251375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVooNs0P6A3H9uDHX3boqcltE1gaS_NWcxK46wW29qVvIH--8i45JjTDDPPOzAPIV8YbRhl-u7YwOgaTplqGG8oM1dkw7pW1EpL84FsKDW6FpSKj-RTzkdKaauZ3JDf22qMPvQBfRVmTDCX5pTiEd0c4lSNOB-ir8DDadnMsYJqitMQJoRUhWnG5wRDhecLLPxnct3DkPH2f70hTz9__L1_qHd_fj3eb3e1E1rONXSqF5K1Hd-LThgUeyNkJ0Trdbfngsu-g16x3hjXgZNeG-W90kCVp7qXRtyQb-vdAwz2lMII6Z-NEOzDdmeXGeXUSKH5Cyvs15Utb50vmGc7huxwGGDCeMmWtUZwxUSrCspW1KWYc8L-7TajdvFsj7Z4totny7gtnkvm-5rB8u9LwGSzCzg59CEVidbH8E76FZt4hCk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793251375</pqid></control><display><type>article</type><title>A modified iterated projection method adapted to a nonlinear integral equation</title><source>Elsevier ScienceDirect Journals</source><creator>Grammont, Laurence ; Vasconcelos, Paulo B. ; Ahues, Mario</creator><creatorcontrib>Grammont, Laurence ; Vasconcelos, Paulo B. ; Ahues, Mario</creatorcontrib><description>The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2015.12.019</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accuracy ; Approximation ; Discretization ; Integral equations ; Iterated projection approximation ; Mathematical analysis ; Mathematical models ; Mathematics ; Newton-like methods ; Nonlinear equations ; Nonlinearity ; Numerical Analysis ; Projection</subject><ispartof>Applied mathematics and computation, 2016-03, Vol.276, p.432-441</ispartof><rights>2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</citedby><cites>FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</cites><orcidid>0000-0002-7132-880X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300315300072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02094362$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Vasconcelos, Paulo B.</creatorcontrib><creatorcontrib>Ahues, Mario</creatorcontrib><title>A modified iterated projection method adapted to a nonlinear integral equation</title><title>Applied mathematics and computation</title><description>The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Discretization</subject><subject>Integral equations</subject><subject>Iterated projection approximation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Newton-like methods</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Projection</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVooNs0P6A3H9uDHX3boqcltE1gaS_NWcxK46wW29qVvIH--8i45JjTDDPPOzAPIV8YbRhl-u7YwOgaTplqGG8oM1dkw7pW1EpL84FsKDW6FpSKj-RTzkdKaauZ3JDf22qMPvQBfRVmTDCX5pTiEd0c4lSNOB-ir8DDadnMsYJqitMQJoRUhWnG5wRDhecLLPxnct3DkPH2f70hTz9__L1_qHd_fj3eb3e1E1rONXSqF5K1Hd-LThgUeyNkJ0Trdbfngsu-g16x3hjXgZNeG-W90kCVp7qXRtyQb-vdAwz2lMII6Z-NEOzDdmeXGeXUSKH5Cyvs15Utb50vmGc7huxwGGDCeMmWtUZwxUSrCspW1KWYc8L-7TajdvFsj7Z4totny7gtnkvm-5rB8u9LwGSzCzg59CEVidbH8E76FZt4hCk</recordid><startdate>20160305</startdate><enddate>20160305</enddate><creator>Grammont, Laurence</creator><creator>Vasconcelos, Paulo B.</creator><creator>Ahues, Mario</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7132-880X</orcidid></search><sort><creationdate>20160305</creationdate><title>A modified iterated projection method adapted to a nonlinear integral equation</title><author>Grammont, Laurence ; Vasconcelos, Paulo B. ; Ahues, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a85f341782b3839e3b9348337d68b2324f8af51f99c8ac4d695dd56a05d06f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Discretization</topic><topic>Integral equations</topic><topic>Iterated projection approximation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Newton-like methods</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammont, Laurence</creatorcontrib><creatorcontrib>Vasconcelos, Paulo B.</creatorcontrib><creatorcontrib>Ahues, Mario</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammont, Laurence</au><au>Vasconcelos, Paulo B.</au><au>Ahues, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified iterated projection method adapted to a nonlinear integral equation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-03-05</date><risdate>2016</risdate><volume>276</volume><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The classical way to tackle a nonlinear Fredholm integral equation of the second kind is to adapt the discretization scheme from the linear case. The Iterated projection method is a popular method since it shows, in most cases, superconvergence and it is easy to implement. The problem is that the accuracy of the approximation is limited by the mesh size discretization. Better approximations can only be achieved for fine discretizations and the size of the linear system to be solved then becomes very large: its dimension grows up with an order proportional to the square of the mesh size. In order to overcome this difficulty, we propose a novel approach to first linearize the nonlinear equation by a Newton-type method and only then to apply the Iterated projection method to each of the linear equations issued from the Newton method. We prove that, for any value (large enough) of the discretization parameter, the approximation tends to the exact solution when the number of Newton iterations tends to infinity, so that we can attain any desired accuracy. Numerical experiments confirm this theoretical result.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2015.12.019</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7132-880X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2016-03, Vol.276, p.432-441 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02094362v1 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy Approximation Discretization Integral equations Iterated projection approximation Mathematical analysis Mathematical models Mathematics Newton-like methods Nonlinear equations Nonlinearity Numerical Analysis Projection |
title | A modified iterated projection method adapted to a nonlinear integral equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20iterated%20projection%20method%20adapted%20to%20a%20nonlinear%20integral%20equation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Grammont,%20Laurence&rft.date=2016-03-05&rft.volume=276&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2015.12.019&rft_dat=%3Cproquest_hal_p%3E1793251375%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793251375&rft_id=info:pmid/&rft_els_id=S0096300315300072&rfr_iscdi=true |