Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire
Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2018-07, Vol.219 (1), p.391-407 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 1 |
container_start_page | 391 |
container_title | The New phytologist |
container_volume | 219 |
creator | Denancé, Nicolas Szurek, Boris Doyle, Erin L. Lauber, Emmanuelle Fontaine‐Bodin, Lisa Carrère, Sébastien Guy, Endrick Hajri, Ahmed Cerutti, Aude Boureau, Tristan Poussier, Stéphane Arlat, Matthieu Bogdanove, Adam J. Noël, Laurent D. |
description | Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences.
We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome).
The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis.
This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution. |
doi_str_mv | 10.1111/nph.15148 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02090739v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90022404</jstor_id><sourcerecordid>90022404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</originalsourceid><addsrcrecordid>eNp1kVFr2zAUhcXYWLNuD_sBG4K-rA9ur2RZ8n0MZWsGYS0jg74J2bmZHWzLk5yV_vspTZvBYHoRiO8c3XMPY-8FXIh0LoexuRCFUOULNhNKY1aK3LxkMwBZZlrpuxP2JsYtAGCh5Wt2IlEbk6OZse-re8_dUFOcguv4Txoo8ti4kdZ8aojfuWFqfO8HF3nt-nHPtZGv5ktOmw3Vkw-PIh5opDD5NtBb9mrjukjvnu5T9uPL59XVIlveXH-9mi-zWgGWWaFJlAWiVAUqletSSY0gqkrmwlUG1FqCM1qvAXUpJanSoENdEJqqQJnnp-z84Nu4zo6h7V14sN61djFf2v0bSEBIMX-LxH46sGPwv3YphO3bWFPXuYH8LlqZNoX7QSChZ_-gW78LQ0qSKGVUAVrLv5_XwccYaHOcQIDdl2JTKfaxlMR-fHLcVT2tj-RzCwm4PAD3bUcP_3ey324Xz5YfDoptTA0cFZgalwpU_gdTFJvN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047450662</pqid></control><display><type>article</type><title>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Denancé, Nicolas ; Szurek, Boris ; Doyle, Erin L. ; Lauber, Emmanuelle ; Fontaine‐Bodin, Lisa ; Carrère, Sébastien ; Guy, Endrick ; Hajri, Ahmed ; Cerutti, Aude ; Boureau, Tristan ; Poussier, Stéphane ; Arlat, Matthieu ; Bogdanove, Adam J. ; Noël, Laurent D.</creator><creatorcontrib>Denancé, Nicolas ; Szurek, Boris ; Doyle, Erin L. ; Lauber, Emmanuelle ; Fontaine‐Bodin, Lisa ; Carrère, Sébastien ; Guy, Endrick ; Hajri, Ahmed ; Cerutti, Aude ; Boureau, Tristan ; Poussier, Stéphane ; Arlat, Matthieu ; Bogdanove, Adam J. ; Noël, Laurent D.</creatorcontrib><description>Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences.
We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome).
The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis.
This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15148</identifier><identifier>PMID: 29677397</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Bacteriology ; Binding ; Biological evolution ; Black rot ; Brassica ; Brassica rapa ; Brassicaceae ; Deoxyribonucleic acid ; DNA ; Evolution ; Evolutionary genetics ; Gene sequencing ; Genes ; Genomes ; Hax ; Host plants ; Life Sciences ; Microbiology and Parasitology ; Molecular chains ; Nucleotide sequence ; PCR ; Plant cells ; Polymerase chain reaction ; Reverse transcription ; Symptoms ; TALE ; Transcription ; Xanthomonas campestris</subject><ispartof>The New phytologist, 2018-07, Vol.219 (1), p.391-407</ispartof><rights>2018 New Phytologist Trust</rights><rights>2018 The Authors New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2018 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</citedby><cites>FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</cites><orcidid>0000-0003-1683-4117 ; 0000-0002-0110-1423 ; 0000-0002-1808-7082 ; 0000-0003-0173-3970 ; 0000-0001-6196-4856 ; 0000-0002-2348-0778 ; 0000-0001-5933-4476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90022404$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90022404$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29677397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02090739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Denancé, Nicolas</creatorcontrib><creatorcontrib>Szurek, Boris</creatorcontrib><creatorcontrib>Doyle, Erin L.</creatorcontrib><creatorcontrib>Lauber, Emmanuelle</creatorcontrib><creatorcontrib>Fontaine‐Bodin, Lisa</creatorcontrib><creatorcontrib>Carrère, Sébastien</creatorcontrib><creatorcontrib>Guy, Endrick</creatorcontrib><creatorcontrib>Hajri, Ahmed</creatorcontrib><creatorcontrib>Cerutti, Aude</creatorcontrib><creatorcontrib>Boureau, Tristan</creatorcontrib><creatorcontrib>Poussier, Stéphane</creatorcontrib><creatorcontrib>Arlat, Matthieu</creatorcontrib><creatorcontrib>Bogdanove, Adam J.</creatorcontrib><creatorcontrib>Noël, Laurent D.</creatorcontrib><title>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences.
We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome).
The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis.
This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.</description><subject>Bacteriology</subject><subject>Binding</subject><subject>Biological evolution</subject><subject>Black rot</subject><subject>Brassica</subject><subject>Brassica rapa</subject><subject>Brassicaceae</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hax</subject><subject>Host plants</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Molecular chains</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>Plant cells</subject><subject>Polymerase chain reaction</subject><subject>Reverse transcription</subject><subject>Symptoms</subject><subject>TALE</subject><subject>Transcription</subject><subject>Xanthomonas campestris</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kVFr2zAUhcXYWLNuD_sBG4K-rA9ur2RZ8n0MZWsGYS0jg74J2bmZHWzLk5yV_vspTZvBYHoRiO8c3XMPY-8FXIh0LoexuRCFUOULNhNKY1aK3LxkMwBZZlrpuxP2JsYtAGCh5Wt2IlEbk6OZse-re8_dUFOcguv4Txoo8ti4kdZ8aojfuWFqfO8HF3nt-nHPtZGv5ktOmw3Vkw-PIh5opDD5NtBb9mrjukjvnu5T9uPL59XVIlveXH-9mi-zWgGWWaFJlAWiVAUqletSSY0gqkrmwlUG1FqCM1qvAXUpJanSoENdEJqqQJnnp-z84Nu4zo6h7V14sN61djFf2v0bSEBIMX-LxH46sGPwv3YphO3bWFPXuYH8LlqZNoX7QSChZ_-gW78LQ0qSKGVUAVrLv5_XwccYaHOcQIDdl2JTKfaxlMR-fHLcVT2tj-RzCwm4PAD3bUcP_3ey324Xz5YfDoptTA0cFZgalwpU_gdTFJvN</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Denancé, Nicolas</creator><creator>Szurek, Boris</creator><creator>Doyle, Erin L.</creator><creator>Lauber, Emmanuelle</creator><creator>Fontaine‐Bodin, Lisa</creator><creator>Carrère, Sébastien</creator><creator>Guy, Endrick</creator><creator>Hajri, Ahmed</creator><creator>Cerutti, Aude</creator><creator>Boureau, Tristan</creator><creator>Poussier, Stéphane</creator><creator>Arlat, Matthieu</creator><creator>Bogdanove, Adam J.</creator><creator>Noël, Laurent D.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1683-4117</orcidid><orcidid>https://orcid.org/0000-0002-0110-1423</orcidid><orcidid>https://orcid.org/0000-0002-1808-7082</orcidid><orcidid>https://orcid.org/0000-0003-0173-3970</orcidid><orcidid>https://orcid.org/0000-0001-6196-4856</orcidid><orcidid>https://orcid.org/0000-0002-2348-0778</orcidid><orcidid>https://orcid.org/0000-0001-5933-4476</orcidid></search><sort><creationdate>20180701</creationdate><title>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</title><author>Denancé, Nicolas ; Szurek, Boris ; Doyle, Erin L. ; Lauber, Emmanuelle ; Fontaine‐Bodin, Lisa ; Carrère, Sébastien ; Guy, Endrick ; Hajri, Ahmed ; Cerutti, Aude ; Boureau, Tristan ; Poussier, Stéphane ; Arlat, Matthieu ; Bogdanove, Adam J. ; Noël, Laurent D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteriology</topic><topic>Binding</topic><topic>Biological evolution</topic><topic>Black rot</topic><topic>Brassica</topic><topic>Brassica rapa</topic><topic>Brassicaceae</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hax</topic><topic>Host plants</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Molecular chains</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>Plant cells</topic><topic>Polymerase chain reaction</topic><topic>Reverse transcription</topic><topic>Symptoms</topic><topic>TALE</topic><topic>Transcription</topic><topic>Xanthomonas campestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denancé, Nicolas</creatorcontrib><creatorcontrib>Szurek, Boris</creatorcontrib><creatorcontrib>Doyle, Erin L.</creatorcontrib><creatorcontrib>Lauber, Emmanuelle</creatorcontrib><creatorcontrib>Fontaine‐Bodin, Lisa</creatorcontrib><creatorcontrib>Carrère, Sébastien</creatorcontrib><creatorcontrib>Guy, Endrick</creatorcontrib><creatorcontrib>Hajri, Ahmed</creatorcontrib><creatorcontrib>Cerutti, Aude</creatorcontrib><creatorcontrib>Boureau, Tristan</creatorcontrib><creatorcontrib>Poussier, Stéphane</creatorcontrib><creatorcontrib>Arlat, Matthieu</creatorcontrib><creatorcontrib>Bogdanove, Adam J.</creatorcontrib><creatorcontrib>Noël, Laurent D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denancé, Nicolas</au><au>Szurek, Boris</au><au>Doyle, Erin L.</au><au>Lauber, Emmanuelle</au><au>Fontaine‐Bodin, Lisa</au><au>Carrère, Sébastien</au><au>Guy, Endrick</au><au>Hajri, Ahmed</au><au>Cerutti, Aude</au><au>Boureau, Tristan</au><au>Poussier, Stéphane</au><au>Arlat, Matthieu</au><au>Bogdanove, Adam J.</au><au>Noël, Laurent D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>219</volume><issue>1</issue><spage>391</spage><epage>407</epage><pages>391-407</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences.
We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome).
The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis.
This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>29677397</pmid><doi>10.1111/nph.15148</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1683-4117</orcidid><orcidid>https://orcid.org/0000-0002-0110-1423</orcidid><orcidid>https://orcid.org/0000-0002-1808-7082</orcidid><orcidid>https://orcid.org/0000-0003-0173-3970</orcidid><orcidid>https://orcid.org/0000-0001-6196-4856</orcidid><orcidid>https://orcid.org/0000-0002-2348-0778</orcidid><orcidid>https://orcid.org/0000-0001-5933-4476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2018-07, Vol.219 (1), p.391-407 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02090739v1 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bacteriology Binding Biological evolution Black rot Brassica Brassica rapa Brassicaceae Deoxyribonucleic acid DNA Evolution Evolutionary genetics Gene sequencing Genes Genomes Hax Host plants Life Sciences Microbiology and Parasitology Molecular chains Nucleotide sequence PCR Plant cells Polymerase chain reaction Reverse transcription Symptoms TALE Transcription Xanthomonas campestris |
title | Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20ancestral%20genes%20shaped%20the%20Xanthomonas%20campestris%20TAL%20effector%20gene%20repertoire&rft.jtitle=The%20New%20phytologist&rft.au=Denanc%C3%A9,%20Nicolas&rft.date=2018-07-01&rft.volume=219&rft.issue=1&rft.spage=391&rft.epage=407&rft.pages=391-407&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15148&rft_dat=%3Cjstor_hal_p%3E90022404%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047450662&rft_id=info:pmid/29677397&rft_jstor_id=90022404&rfr_iscdi=true |