Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire

Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2018-07, Vol.219 (1), p.391-407
Hauptverfasser: Denancé, Nicolas, Szurek, Boris, Doyle, Erin L., Lauber, Emmanuelle, Fontaine‐Bodin, Lisa, Carrère, Sébastien, Guy, Endrick, Hajri, Ahmed, Cerutti, Aude, Boureau, Tristan, Poussier, Stéphane, Arlat, Matthieu, Bogdanove, Adam J., Noël, Laurent D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 1
container_start_page 391
container_title The New phytologist
container_volume 219
creator Denancé, Nicolas
Szurek, Boris
Doyle, Erin L.
Lauber, Emmanuelle
Fontaine‐Bodin, Lisa
Carrère, Sébastien
Guy, Endrick
Hajri, Ahmed
Cerutti, Aude
Boureau, Tristan
Poussier, Stéphane
Arlat, Matthieu
Bogdanove, Adam J.
Noël, Laurent D.
description Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.
doi_str_mv 10.1111/nph.15148
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02090739v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90022404</jstor_id><sourcerecordid>90022404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</originalsourceid><addsrcrecordid>eNp1kVFr2zAUhcXYWLNuD_sBG4K-rA9ur2RZ8n0MZWsGYS0jg74J2bmZHWzLk5yV_vspTZvBYHoRiO8c3XMPY-8FXIh0LoexuRCFUOULNhNKY1aK3LxkMwBZZlrpuxP2JsYtAGCh5Wt2IlEbk6OZse-re8_dUFOcguv4Txoo8ti4kdZ8aojfuWFqfO8HF3nt-nHPtZGv5ktOmw3Vkw-PIh5opDD5NtBb9mrjukjvnu5T9uPL59XVIlveXH-9mi-zWgGWWaFJlAWiVAUqletSSY0gqkrmwlUG1FqCM1qvAXUpJanSoENdEJqqQJnnp-z84Nu4zo6h7V14sN61djFf2v0bSEBIMX-LxH46sGPwv3YphO3bWFPXuYH8LlqZNoX7QSChZ_-gW78LQ0qSKGVUAVrLv5_XwccYaHOcQIDdl2JTKfaxlMR-fHLcVT2tj-RzCwm4PAD3bUcP_3ey324Xz5YfDoptTA0cFZgalwpU_gdTFJvN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047450662</pqid></control><display><type>article</type><title>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Denancé, Nicolas ; Szurek, Boris ; Doyle, Erin L. ; Lauber, Emmanuelle ; Fontaine‐Bodin, Lisa ; Carrère, Sébastien ; Guy, Endrick ; Hajri, Ahmed ; Cerutti, Aude ; Boureau, Tristan ; Poussier, Stéphane ; Arlat, Matthieu ; Bogdanove, Adam J. ; Noël, Laurent D.</creator><creatorcontrib>Denancé, Nicolas ; Szurek, Boris ; Doyle, Erin L. ; Lauber, Emmanuelle ; Fontaine‐Bodin, Lisa ; Carrère, Sébastien ; Guy, Endrick ; Hajri, Ahmed ; Cerutti, Aude ; Boureau, Tristan ; Poussier, Stéphane ; Arlat, Matthieu ; Bogdanove, Adam J. ; Noël, Laurent D.</creatorcontrib><description>Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15148</identifier><identifier>PMID: 29677397</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Bacteriology ; Binding ; Biological evolution ; Black rot ; Brassica ; Brassica rapa ; Brassicaceae ; Deoxyribonucleic acid ; DNA ; Evolution ; Evolutionary genetics ; Gene sequencing ; Genes ; Genomes ; Hax ; Host plants ; Life Sciences ; Microbiology and Parasitology ; Molecular chains ; Nucleotide sequence ; PCR ; Plant cells ; Polymerase chain reaction ; Reverse transcription ; Symptoms ; TALE ; Transcription ; Xanthomonas campestris</subject><ispartof>The New phytologist, 2018-07, Vol.219 (1), p.391-407</ispartof><rights>2018 New Phytologist Trust</rights><rights>2018 The Authors New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2018 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</citedby><cites>FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</cites><orcidid>0000-0003-1683-4117 ; 0000-0002-0110-1423 ; 0000-0002-1808-7082 ; 0000-0003-0173-3970 ; 0000-0001-6196-4856 ; 0000-0002-2348-0778 ; 0000-0001-5933-4476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90022404$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90022404$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29677397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02090739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Denancé, Nicolas</creatorcontrib><creatorcontrib>Szurek, Boris</creatorcontrib><creatorcontrib>Doyle, Erin L.</creatorcontrib><creatorcontrib>Lauber, Emmanuelle</creatorcontrib><creatorcontrib>Fontaine‐Bodin, Lisa</creatorcontrib><creatorcontrib>Carrère, Sébastien</creatorcontrib><creatorcontrib>Guy, Endrick</creatorcontrib><creatorcontrib>Hajri, Ahmed</creatorcontrib><creatorcontrib>Cerutti, Aude</creatorcontrib><creatorcontrib>Boureau, Tristan</creatorcontrib><creatorcontrib>Poussier, Stéphane</creatorcontrib><creatorcontrib>Arlat, Matthieu</creatorcontrib><creatorcontrib>Bogdanove, Adam J.</creatorcontrib><creatorcontrib>Noël, Laurent D.</creatorcontrib><title>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.</description><subject>Bacteriology</subject><subject>Binding</subject><subject>Biological evolution</subject><subject>Black rot</subject><subject>Brassica</subject><subject>Brassica rapa</subject><subject>Brassicaceae</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hax</subject><subject>Host plants</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Molecular chains</subject><subject>Nucleotide sequence</subject><subject>PCR</subject><subject>Plant cells</subject><subject>Polymerase chain reaction</subject><subject>Reverse transcription</subject><subject>Symptoms</subject><subject>TALE</subject><subject>Transcription</subject><subject>Xanthomonas campestris</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kVFr2zAUhcXYWLNuD_sBG4K-rA9ur2RZ8n0MZWsGYS0jg74J2bmZHWzLk5yV_vspTZvBYHoRiO8c3XMPY-8FXIh0LoexuRCFUOULNhNKY1aK3LxkMwBZZlrpuxP2JsYtAGCh5Wt2IlEbk6OZse-re8_dUFOcguv4Txoo8ti4kdZ8aojfuWFqfO8HF3nt-nHPtZGv5ktOmw3Vkw-PIh5opDD5NtBb9mrjukjvnu5T9uPL59XVIlveXH-9mi-zWgGWWaFJlAWiVAUqletSSY0gqkrmwlUG1FqCM1qvAXUpJanSoENdEJqqQJnnp-z84Nu4zo6h7V14sN61djFf2v0bSEBIMX-LxH46sGPwv3YphO3bWFPXuYH8LlqZNoX7QSChZ_-gW78LQ0qSKGVUAVrLv5_XwccYaHOcQIDdl2JTKfaxlMR-fHLcVT2tj-RzCwm4PAD3bUcP_3ey324Xz5YfDoptTA0cFZgalwpU_gdTFJvN</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Denancé, Nicolas</creator><creator>Szurek, Boris</creator><creator>Doyle, Erin L.</creator><creator>Lauber, Emmanuelle</creator><creator>Fontaine‐Bodin, Lisa</creator><creator>Carrère, Sébastien</creator><creator>Guy, Endrick</creator><creator>Hajri, Ahmed</creator><creator>Cerutti, Aude</creator><creator>Boureau, Tristan</creator><creator>Poussier, Stéphane</creator><creator>Arlat, Matthieu</creator><creator>Bogdanove, Adam J.</creator><creator>Noël, Laurent D.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1683-4117</orcidid><orcidid>https://orcid.org/0000-0002-0110-1423</orcidid><orcidid>https://orcid.org/0000-0002-1808-7082</orcidid><orcidid>https://orcid.org/0000-0003-0173-3970</orcidid><orcidid>https://orcid.org/0000-0001-6196-4856</orcidid><orcidid>https://orcid.org/0000-0002-2348-0778</orcidid><orcidid>https://orcid.org/0000-0001-5933-4476</orcidid></search><sort><creationdate>20180701</creationdate><title>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</title><author>Denancé, Nicolas ; Szurek, Boris ; Doyle, Erin L. ; Lauber, Emmanuelle ; Fontaine‐Bodin, Lisa ; Carrère, Sébastien ; Guy, Endrick ; Hajri, Ahmed ; Cerutti, Aude ; Boureau, Tristan ; Poussier, Stéphane ; Arlat, Matthieu ; Bogdanove, Adam J. ; Noël, Laurent D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4098-56e18599245944368426901bb231ab704d20a766d096822e4879a965e97b59233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteriology</topic><topic>Binding</topic><topic>Biological evolution</topic><topic>Black rot</topic><topic>Brassica</topic><topic>Brassica rapa</topic><topic>Brassicaceae</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hax</topic><topic>Host plants</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Molecular chains</topic><topic>Nucleotide sequence</topic><topic>PCR</topic><topic>Plant cells</topic><topic>Polymerase chain reaction</topic><topic>Reverse transcription</topic><topic>Symptoms</topic><topic>TALE</topic><topic>Transcription</topic><topic>Xanthomonas campestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denancé, Nicolas</creatorcontrib><creatorcontrib>Szurek, Boris</creatorcontrib><creatorcontrib>Doyle, Erin L.</creatorcontrib><creatorcontrib>Lauber, Emmanuelle</creatorcontrib><creatorcontrib>Fontaine‐Bodin, Lisa</creatorcontrib><creatorcontrib>Carrère, Sébastien</creatorcontrib><creatorcontrib>Guy, Endrick</creatorcontrib><creatorcontrib>Hajri, Ahmed</creatorcontrib><creatorcontrib>Cerutti, Aude</creatorcontrib><creatorcontrib>Boureau, Tristan</creatorcontrib><creatorcontrib>Poussier, Stéphane</creatorcontrib><creatorcontrib>Arlat, Matthieu</creatorcontrib><creatorcontrib>Bogdanove, Adam J.</creatorcontrib><creatorcontrib>Noël, Laurent D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denancé, Nicolas</au><au>Szurek, Boris</au><au>Doyle, Erin L.</au><au>Lauber, Emmanuelle</au><au>Fontaine‐Bodin, Lisa</au><au>Carrère, Sébastien</au><au>Guy, Endrick</au><au>Hajri, Ahmed</au><au>Cerutti, Aude</au><au>Boureau, Tristan</au><au>Poussier, Stéphane</au><au>Arlat, Matthieu</au><au>Bogdanove, Adam J.</au><au>Noël, Laurent D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>219</volume><issue>1</issue><spage>391</spage><epage>407</epage><pages>391-407</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>29677397</pmid><doi>10.1111/nph.15148</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1683-4117</orcidid><orcidid>https://orcid.org/0000-0002-0110-1423</orcidid><orcidid>https://orcid.org/0000-0002-1808-7082</orcidid><orcidid>https://orcid.org/0000-0003-0173-3970</orcidid><orcidid>https://orcid.org/0000-0001-6196-4856</orcidid><orcidid>https://orcid.org/0000-0002-2348-0778</orcidid><orcidid>https://orcid.org/0000-0001-5933-4476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2018-07, Vol.219 (1), p.391-407
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_02090739v1
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bacteriology
Binding
Biological evolution
Black rot
Brassica
Brassica rapa
Brassicaceae
Deoxyribonucleic acid
DNA
Evolution
Evolutionary genetics
Gene sequencing
Genes
Genomes
Hax
Host plants
Life Sciences
Microbiology and Parasitology
Molecular chains
Nucleotide sequence
PCR
Plant cells
Polymerase chain reaction
Reverse transcription
Symptoms
TALE
Transcription
Xanthomonas campestris
title Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20ancestral%20genes%20shaped%20the%20Xanthomonas%20campestris%20TAL%20effector%20gene%20repertoire&rft.jtitle=The%20New%20phytologist&rft.au=Denanc%C3%A9,%20Nicolas&rft.date=2018-07-01&rft.volume=219&rft.issue=1&rft.spage=391&rft.epage=407&rft.pages=391-407&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15148&rft_dat=%3Cjstor_hal_p%3E90022404%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047450662&rft_id=info:pmid/29677397&rft_jstor_id=90022404&rfr_iscdi=true