Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media
A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investiga...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2018-04, Vol.75 (7), p.2445-2465 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2465 |
---|---|
container_issue | 7 |
container_start_page | 2445 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 75 |
creator | Sadeghi, R. Shadloo, M.S. Hopp-Hirschler, M. Hadjadj, A. Nieken, U. |
description | A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate. |
doi_str_mv | 10.1016/j.camwa.2017.12.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02088400v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117307915</els_id><sourcerecordid>2066202134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</originalsourceid><addsrcrecordid>eNp9kD9v2zAQxYmiAeom-QRdCHTqIOWO1B9q6JAGaRPAQBbvBEOdKhqS6JKyDefTh6qDjJkOePd7d3iPsW8IOQJWN9vcmvFocgFY5yhyEOoTW6GqZVZXlfrMVqAalaEQ-IV9jXELAIUUsGK06QNR1rqRpuj8ZAY-mHl2lvgvP8wvo5kmHt24T2paR-473ru_PW8Xfj7xsOh8Pvps15tIvBv8MXI38Z0Pfh_5SK0zV-yiM0Ok67d5yTa_7zd3D9n66c_j3e06s0VRz1lHplYN0bNsEERjqBYtNqIzZQeSyBolsUJrCqnKUsqOUNSlxbKRpQIF8pL9OJ_tzaB3wY0mnLQ3Tj_crvWigQClCoADJvb7md0F_29PcdZbvw8pf9QCqkqAQFkkSp4pG3yMgbr3swh6qV5v9f_q9VK9RpFeqOT6eXZRynpwFHS0jiabqghkZ91696H_FV9gjYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066202134</pqid></control><display><type>article</type><title>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sadeghi, R. ; Shadloo, M.S. ; Hopp-Hirschler, M. ; Hadjadj, A. ; Nieken, U.</creator><creatorcontrib>Sadeghi, R. ; Shadloo, M.S. ; Hopp-Hirschler, M. ; Hadjadj, A. ; Nieken, U.</creatorcontrib><description>A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.12.028</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Computer simulation ; Contact angle ; Density ratio ; Droplet penetration ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Fluids mechanics ; Froude number ; High density ratio ; Laplace transforms ; Lattice Boltzmann method ; Mathematical models ; Mechanics ; Parameters ; Penetration ; Porosity ; Porous materials ; Porous media ; Reynolds number ; Substrates ; Thermics ; Three dimensional models ; Transport ; Two phase flow ; Weber number</subject><ispartof>Computers & mathematics with applications (1987), 2018-04, Vol.75 (7), p.2445-2465</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</citedby><cites>FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</cites><orcidid>0000-0002-0631-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122117307915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02088400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeghi, R.</creatorcontrib><creatorcontrib>Shadloo, M.S.</creatorcontrib><creatorcontrib>Hopp-Hirschler, M.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><creatorcontrib>Nieken, U.</creatorcontrib><title>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</title><title>Computers & mathematics with applications (1987)</title><description>A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Density ratio</subject><subject>Droplet penetration</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids mechanics</subject><subject>Froude number</subject><subject>High density ratio</subject><subject>Laplace transforms</subject><subject>Lattice Boltzmann method</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Parameters</subject><subject>Penetration</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Reynolds number</subject><subject>Substrates</subject><subject>Thermics</subject><subject>Three dimensional models</subject><subject>Transport</subject><subject>Two phase flow</subject><subject>Weber number</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9v2zAQxYmiAeom-QRdCHTqIOWO1B9q6JAGaRPAQBbvBEOdKhqS6JKyDefTh6qDjJkOePd7d3iPsW8IOQJWN9vcmvFocgFY5yhyEOoTW6GqZVZXlfrMVqAalaEQ-IV9jXELAIUUsGK06QNR1rqRpuj8ZAY-mHl2lvgvP8wvo5kmHt24T2paR-473ru_PW8Xfj7xsOh8Pvps15tIvBv8MXI38Z0Pfh_5SK0zV-yiM0Ok67d5yTa_7zd3D9n66c_j3e06s0VRz1lHplYN0bNsEERjqBYtNqIzZQeSyBolsUJrCqnKUsqOUNSlxbKRpQIF8pL9OJ_tzaB3wY0mnLQ3Tj_crvWigQClCoADJvb7md0F_29PcdZbvw8pf9QCqkqAQFkkSp4pG3yMgbr3swh6qV5v9f_q9VK9RpFeqOT6eXZRynpwFHS0jiabqghkZ91696H_FV9gjYs</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sadeghi, R.</creator><creator>Shadloo, M.S.</creator><creator>Hopp-Hirschler, M.</creator><creator>Hadjadj, A.</creator><creator>Nieken, U.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid></search><sort><creationdate>20180401</creationdate><title>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</title><author>Sadeghi, R. ; Shadloo, M.S. ; Hopp-Hirschler, M. ; Hadjadj, A. ; Nieken, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Density ratio</topic><topic>Droplet penetration</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids mechanics</topic><topic>Froude number</topic><topic>High density ratio</topic><topic>Laplace transforms</topic><topic>Lattice Boltzmann method</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Parameters</topic><topic>Penetration</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Reynolds number</topic><topic>Substrates</topic><topic>Thermics</topic><topic>Three dimensional models</topic><topic>Transport</topic><topic>Two phase flow</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, R.</creatorcontrib><creatorcontrib>Shadloo, M.S.</creatorcontrib><creatorcontrib>Hopp-Hirschler, M.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><creatorcontrib>Nieken, U.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, R.</au><au>Shadloo, M.S.</au><au>Hopp-Hirschler, M.</au><au>Hadjadj, A.</au><au>Nieken, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>75</volume><issue>7</issue><spage>2445</spage><epage>2465</epage><pages>2445-2465</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.12.028</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2018-04, Vol.75 (7), p.2445-2465 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02088400v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aerodynamics Computational fluid dynamics Computer simulation Contact angle Density ratio Droplet penetration Engineering Sciences Fluid dynamics Fluid flow Fluids mechanics Froude number High density ratio Laplace transforms Lattice Boltzmann method Mathematical models Mechanics Parameters Penetration Porosity Porous materials Porous media Reynolds number Substrates Thermics Three dimensional models Transport Two phase flow Weber number |
title | Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20lattice%20Boltzmann%20simulations%20of%20high%20density%20ratio%20two-phase%20flows%20in%20porous%20media&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Sadeghi,%20R.&rft.date=2018-04-01&rft.volume=75&rft.issue=7&rft.spage=2445&rft.epage=2465&rft.pages=2445-2465&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.12.028&rft_dat=%3Cproquest_hal_p%3E2066202134%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066202134&rft_id=info:pmid/&rft_els_id=S0898122117307915&rfr_iscdi=true |