Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media

A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-04, Vol.75 (7), p.2445-2465
Hauptverfasser: Sadeghi, R., Shadloo, M.S., Hopp-Hirschler, M., Hadjadj, A., Nieken, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2465
container_issue 7
container_start_page 2445
container_title Computers & mathematics with applications (1987)
container_volume 75
creator Sadeghi, R.
Shadloo, M.S.
Hopp-Hirschler, M.
Hadjadj, A.
Nieken, U.
description A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.
doi_str_mv 10.1016/j.camwa.2017.12.028
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02088400v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117307915</els_id><sourcerecordid>2066202134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</originalsourceid><addsrcrecordid>eNp9kD9v2zAQxYmiAeom-QRdCHTqIOWO1B9q6JAGaRPAQBbvBEOdKhqS6JKyDefTh6qDjJkOePd7d3iPsW8IOQJWN9vcmvFocgFY5yhyEOoTW6GqZVZXlfrMVqAalaEQ-IV9jXELAIUUsGK06QNR1rqRpuj8ZAY-mHl2lvgvP8wvo5kmHt24T2paR-473ru_PW8Xfj7xsOh8Pvps15tIvBv8MXI38Z0Pfh_5SK0zV-yiM0Ok67d5yTa_7zd3D9n66c_j3e06s0VRz1lHplYN0bNsEERjqBYtNqIzZQeSyBolsUJrCqnKUsqOUNSlxbKRpQIF8pL9OJ_tzaB3wY0mnLQ3Tj_crvWigQClCoADJvb7md0F_29PcdZbvw8pf9QCqkqAQFkkSp4pG3yMgbr3swh6qV5v9f_q9VK9RpFeqOT6eXZRynpwFHS0jiabqghkZ91696H_FV9gjYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066202134</pqid></control><display><type>article</type><title>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sadeghi, R. ; Shadloo, M.S. ; Hopp-Hirschler, M. ; Hadjadj, A. ; Nieken, U.</creator><creatorcontrib>Sadeghi, R. ; Shadloo, M.S. ; Hopp-Hirschler, M. ; Hadjadj, A. ; Nieken, U.</creatorcontrib><description>A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.12.028</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Computer simulation ; Contact angle ; Density ratio ; Droplet penetration ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Fluids mechanics ; Froude number ; High density ratio ; Laplace transforms ; Lattice Boltzmann method ; Mathematical models ; Mechanics ; Parameters ; Penetration ; Porosity ; Porous materials ; Porous media ; Reynolds number ; Substrates ; Thermics ; Three dimensional models ; Transport ; Two phase flow ; Weber number</subject><ispartof>Computers &amp; mathematics with applications (1987), 2018-04, Vol.75 (7), p.2445-2465</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</citedby><cites>FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</cites><orcidid>0000-0002-0631-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122117307915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02088400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeghi, R.</creatorcontrib><creatorcontrib>Shadloo, M.S.</creatorcontrib><creatorcontrib>Hopp-Hirschler, M.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><creatorcontrib>Nieken, U.</creatorcontrib><title>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</title><title>Computers &amp; mathematics with applications (1987)</title><description>A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Density ratio</subject><subject>Droplet penetration</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids mechanics</subject><subject>Froude number</subject><subject>High density ratio</subject><subject>Laplace transforms</subject><subject>Lattice Boltzmann method</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Parameters</subject><subject>Penetration</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Reynolds number</subject><subject>Substrates</subject><subject>Thermics</subject><subject>Three dimensional models</subject><subject>Transport</subject><subject>Two phase flow</subject><subject>Weber number</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9v2zAQxYmiAeom-QRdCHTqIOWO1B9q6JAGaRPAQBbvBEOdKhqS6JKyDefTh6qDjJkOePd7d3iPsW8IOQJWN9vcmvFocgFY5yhyEOoTW6GqZVZXlfrMVqAalaEQ-IV9jXELAIUUsGK06QNR1rqRpuj8ZAY-mHl2lvgvP8wvo5kmHt24T2paR-473ru_PW8Xfj7xsOh8Pvps15tIvBv8MXI38Z0Pfh_5SK0zV-yiM0Ok67d5yTa_7zd3D9n66c_j3e06s0VRz1lHplYN0bNsEERjqBYtNqIzZQeSyBolsUJrCqnKUsqOUNSlxbKRpQIF8pL9OJ_tzaB3wY0mnLQ3Tj_crvWigQClCoADJvb7md0F_29PcdZbvw8pf9QCqkqAQFkkSp4pG3yMgbr3swh6qV5v9f_q9VK9RpFeqOT6eXZRynpwFHS0jiabqghkZ91696H_FV9gjYs</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Sadeghi, R.</creator><creator>Shadloo, M.S.</creator><creator>Hopp-Hirschler, M.</creator><creator>Hadjadj, A.</creator><creator>Nieken, U.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid></search><sort><creationdate>20180401</creationdate><title>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</title><author>Sadeghi, R. ; Shadloo, M.S. ; Hopp-Hirschler, M. ; Hadjadj, A. ; Nieken, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-fea789eeb391029ae72d192fa5f03eeca83161ca4385533fe1275c1593580803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Density ratio</topic><topic>Droplet penetration</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids mechanics</topic><topic>Froude number</topic><topic>High density ratio</topic><topic>Laplace transforms</topic><topic>Lattice Boltzmann method</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Parameters</topic><topic>Penetration</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Reynolds number</topic><topic>Substrates</topic><topic>Thermics</topic><topic>Three dimensional models</topic><topic>Transport</topic><topic>Two phase flow</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, R.</creatorcontrib><creatorcontrib>Shadloo, M.S.</creatorcontrib><creatorcontrib>Hopp-Hirschler, M.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><creatorcontrib>Nieken, U.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, R.</au><au>Shadloo, M.S.</au><au>Hopp-Hirschler, M.</au><au>Hadjadj, A.</au><au>Nieken, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>75</volume><issue>7</issue><spage>2445</spage><epage>2465</epage><pages>2445-2465</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A three-dimensional multiphase lattice Boltzmann model is implemented to study the spontaneous phase transport in complex porous media. The model is validated against the analytical solution of Young’s and Laplace’s laws. Afterward, three-dimensional porous layers are randomly generated to investigate droplet penetration into a substrate, liquid transport in a porous channel as well as extraction of a droplet from a porous medium. Effects of several geometrical and flow parameters such as porosity, density ratio, Reynolds number, Weber number, Froude number and contact angle are considered. A parametric study of the influence of main non-dimensional parameters upon the impact of liquid drops on permeable surface is performed. Results show that while increasing Froude number causes spreading of the droplet on the surface, increasing Reynolds number, Weber number, porosity and liquid-air density ratio will enhance the penetration rate into the surface. Furthermore, increasing the contact angle decreases both the spreading and the penetration rate at the same time. In the same way, for the liquid transport in a porous channel, it is found that increasing the porosity and Reynolds number will result in increasing penetration rate in the channel. For the extraction of a droplet from a porous medium, it is shown that by increasing the gravitational force and/or porosity the droplet extracts faster from the substrate.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.12.028</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2018-04, Vol.75 (7), p.2445-2465
issn 0898-1221
1873-7668
language eng
recordid cdi_hal_primary_oai_HAL_hal_02088400v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerodynamics
Computational fluid dynamics
Computer simulation
Contact angle
Density ratio
Droplet penetration
Engineering Sciences
Fluid dynamics
Fluid flow
Fluids mechanics
Froude number
High density ratio
Laplace transforms
Lattice Boltzmann method
Mathematical models
Mechanics
Parameters
Penetration
Porosity
Porous materials
Porous media
Reynolds number
Substrates
Thermics
Three dimensional models
Transport
Two phase flow
Weber number
title Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20lattice%20Boltzmann%20simulations%20of%20high%20density%20ratio%20two-phase%20flows%20in%20porous%20media&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Sadeghi,%20R.&rft.date=2018-04-01&rft.volume=75&rft.issue=7&rft.spage=2445&rft.epage=2465&rft.pages=2445-2465&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.12.028&rft_dat=%3Cproquest_hal_p%3E2066202134%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066202134&rft_id=info:pmid/&rft_els_id=S0898122117307915&rfr_iscdi=true