Automaticity and Invariant Measures of Linear Cellular Automata

We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2020-12, Vol.72 (6), p.1691-1726
Hauptverfasser: Rowland, Eric, Yassawi, Reem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 6
container_start_page 1691
container_title Canadian journal of mathematics
container_volume 72
creator Rowland, Eric
Yassawi, Reem
description We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.
doi_str_mv 10.4153/S0008414X19000488
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02086887v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008414X19000488</cupid><sourcerecordid>2460672524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-45c6b2b703256c15dd37922939bb81da7b7531c60c6f678644e41a6e88f9164e3</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwFXLqLzfqykFLWFiAsV3A2TyUSnpEmdSQr9eye06EJc3XPveXA5AFwieEMRI7cvEEJJEX1HKiEq5RGYIKp4TrFQx2Ay0vnIn4KzGFdpJZyhCbibDX23Nr23vt9lpq2yZbs1wZu2z56ciUNwMevqrPCtMyGbu6YZmgQONnMOTmrTRHdxmFPw9nD_Ol_kxfPjcj4rckso73PKLC9xKSDBjFvEqooIhbEiqiwlqowoBSPIcmh5zYXklDqKDHdS1gpx6sgUXO9zP02jN8GvTdjpzni9mBV6vEEMJZdSbFHSXu21m9B9DS72etUNoU3vaUw55AIzTJMK7VU2dDEGV__EIqjHTvWfTpOHHDxmXQZffbjf6P9d36_2dh4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460672524</pqid></control><display><type>article</type><title>Automaticity and Invariant Measures of Linear Cellular Automata</title><source>Cambridge University Press Journals Complete</source><creator>Rowland, Eric ; Yassawi, Reem</creator><creatorcontrib>Rowland, Eric ; Yassawi, Reem</creatorcontrib><description>We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.</description><identifier>ISSN: 0008-414X</identifier><identifier>EISSN: 1496-4279</identifier><identifier>DOI: 10.4153/S0008414X19000488</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Dynamical Systems ; Mathematics ; Spacetime</subject><ispartof>Canadian journal of mathematics, 2020-12, Vol.72 (6), p.1691-1726</ispartof><rights>Canadian Mathematical Society 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-45c6b2b703256c15dd37922939bb81da7b7531c60c6f678644e41a6e88f9164e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0008414X19000488/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02086887$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowland, Eric</creatorcontrib><creatorcontrib>Yassawi, Reem</creatorcontrib><title>Automaticity and Invariant Measures of Linear Cellular Automata</title><title>Canadian journal of mathematics</title><addtitle>Can. J. Math.-J. Can. Math</addtitle><description>We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.</description><subject>Dynamical Systems</subject><subject>Mathematics</subject><subject>Spacetime</subject><issn>0008-414X</issn><issn>1496-4279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtKw0AUHUTBWv0AdwFXLqLzfqykFLWFiAsV3A2TyUSnpEmdSQr9eye06EJc3XPveXA5AFwieEMRI7cvEEJJEX1HKiEq5RGYIKp4TrFQx2Ay0vnIn4KzGFdpJZyhCbibDX23Nr23vt9lpq2yZbs1wZu2z56ciUNwMevqrPCtMyGbu6YZmgQONnMOTmrTRHdxmFPw9nD_Ol_kxfPjcj4rckso73PKLC9xKSDBjFvEqooIhbEiqiwlqowoBSPIcmh5zYXklDqKDHdS1gpx6sgUXO9zP02jN8GvTdjpzni9mBV6vEEMJZdSbFHSXu21m9B9DS72etUNoU3vaUw55AIzTJMK7VU2dDEGV__EIqjHTvWfTpOHHDxmXQZffbjf6P9d36_2dh4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Rowland, Eric</creator><creator>Yassawi, Reem</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><general>University of Toronto Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20201201</creationdate><title>Automaticity and Invariant Measures of Linear Cellular Automata</title><author>Rowland, Eric ; Yassawi, Reem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-45c6b2b703256c15dd37922939bb81da7b7531c60c6f678644e41a6e88f9164e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamical Systems</topic><topic>Mathematics</topic><topic>Spacetime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowland, Eric</creatorcontrib><creatorcontrib>Yassawi, Reem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Canadian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowland, Eric</au><au>Yassawi, Reem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automaticity and Invariant Measures of Linear Cellular Automata</atitle><jtitle>Canadian journal of mathematics</jtitle><addtitle>Can. J. Math.-J. Can. Math</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>72</volume><issue>6</issue><spage>1691</spage><epage>1726</epage><pages>1691-1726</pages><issn>0008-414X</issn><eissn>1496-4279</eissn><abstract>We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008414X19000488</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-414X
ispartof Canadian journal of mathematics, 2020-12, Vol.72 (6), p.1691-1726
issn 0008-414X
1496-4279
language eng
recordid cdi_hal_primary_oai_HAL_hal_02086887v1
source Cambridge University Press Journals Complete
subjects Dynamical Systems
Mathematics
Spacetime
title Automaticity and Invariant Measures of Linear Cellular Automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automaticity%20and%20Invariant%20Measures%20of%20Linear%20Cellular%20Automata&rft.jtitle=Canadian%20journal%20of%20mathematics&rft.au=Rowland,%20Eric&rft.date=2020-12-01&rft.volume=72&rft.issue=6&rft.spage=1691&rft.epage=1726&rft.pages=1691-1726&rft.issn=0008-414X&rft.eissn=1496-4279&rft_id=info:doi/10.4153/S0008414X19000488&rft_dat=%3Cproquest_hal_p%3E2460672524%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460672524&rft_id=info:pmid/&rft_cupid=10_4153_S0008414X19000488&rfr_iscdi=true