Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)

•The dynamics of a single air bubble, the coaxial coalescence of two successive bubbles are investigated using the VOF method.•The wake structure and the liquid phase velocity field has been also studied.•Effect of injection air velocity and liquid phase viscosity are studied The dynamics of a singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2018-01, Vol.161, p.47-59
Hauptverfasser: Abbassi, W., Besbes, S., Elhajem, M., Aissia, H. Ben, Champagne, J.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 47
container_title Computers & fluids
container_volume 161
creator Abbassi, W.
Besbes, S.
Elhajem, M.
Aissia, H. Ben
Champagne, J.Y.
description •The dynamics of a single air bubble, the coaxial coalescence of two successive bubbles are investigated using the VOF method.•The wake structure and the liquid phase velocity field has been also studied.•Effect of injection air velocity and liquid phase viscosity are studied The dynamics of a single air bubble, the wake structure, the instantaneous liquid velocity field around it and the coaxial coalescence of two successive bubbles have been widely studied in this work by using the VOF method on the software platform of Fluent. It is observed that the bubble rising trajectory changes from one dimension to three dimensions by decreasing the viscosity of the liquid phase. The different behaviors of air bubbles introduce various instantaneous bubbles wake structures which strongly depend on their shape and on the physical properties of the liquid phase. Indeed, as the solution viscosity decreases, the bubbles’ shape changes from non-deformed (ellipsoidal) to the deformed shape. In the case of bubbles chain, the wake of the leading bubble significantly affects the shape, trajectory and velocity of the trailing bubble, as well as the velocity field of the liquid phase surrounding it. For high orifice air velocities and due to the wake of the leading bubble, the trailing bubble accelerates and approaches to the leading bubble and finally coalescence phenomenon occurs. During this process, the shape of the leading bubble becomes oblate while the shape of the trailing bubble is stretched in a vertical direction. Thus, the coalescence time and position of two successive bubbles generally increase with increasing the surface tension of the liquid and reducing its viscosity.
doi_str_mv 10.1016/j.compfluid.2017.11.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02085874v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793017304188</els_id><sourcerecordid>2012061552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-dfa56b7d1dbc1192d7e6cef1c97fc868d62cb3bb0955b3e3c4c3f66e6fcf880e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhq2KSiyF34AlLvSQ1JMPOzmuKtoirdoL5Wr5Y9z1KokXO1nBv8fpol45jTx-3lcz8xLyGVgJDPjNoTRhPLph8basGIgSoGTALsgGOtEXTDTiHdkw1rSF6Gv2nnxI6cDyu66aDZkflxGjN2qgyY_LoGYfJhocdRGRqmRwSmtHTZaaoH77DOY64PpjcCWVj1QvWuceXZKfXui8R3oKQ3Z-dVpHoyPO-2Dp159Pd9cfyaVTQ8JP_-oVeb779uP2odg93X-_3e4KUwsxF9aplmthwWoD0FdWIDfowPTCmY53lldG11qzvm11jbVpTO04R-6M6zqG9RW5Pvvu1SCP0Y8q_pFBefmw3cm1xyrWtZ1oTpDZL2f2GMOvBdMsD2GJUx5P5qtWjEPbVpkSZ8rEkFJE92YLTK5xyIN8i2MVCgkgcxxZuT0rMS988hhlMn49ofURzSxt8P_1-AuIapjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012061552</pqid></control><display><type>article</type><title>Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abbassi, W. ; Besbes, S. ; Elhajem, M. ; Aissia, H. Ben ; Champagne, J.Y.</creator><creatorcontrib>Abbassi, W. ; Besbes, S. ; Elhajem, M. ; Aissia, H. Ben ; Champagne, J.Y.</creatorcontrib><description>•The dynamics of a single air bubble, the coaxial coalescence of two successive bubbles are investigated using the VOF method.•The wake structure and the liquid phase velocity field has been also studied.•Effect of injection air velocity and liquid phase viscosity are studied The dynamics of a single air bubble, the wake structure, the instantaneous liquid velocity field around it and the coaxial coalescence of two successive bubbles have been widely studied in this work by using the VOF method on the software platform of Fluent. It is observed that the bubble rising trajectory changes from one dimension to three dimensions by decreasing the viscosity of the liquid phase. The different behaviors of air bubbles introduce various instantaneous bubbles wake structures which strongly depend on their shape and on the physical properties of the liquid phase. Indeed, as the solution viscosity decreases, the bubbles’ shape changes from non-deformed (ellipsoidal) to the deformed shape. In the case of bubbles chain, the wake of the leading bubble significantly affects the shape, trajectory and velocity of the trailing bubble, as well as the velocity field of the liquid phase surrounding it. For high orifice air velocities and due to the wake of the leading bubble, the trailing bubble accelerates and approaches to the leading bubble and finally coalescence phenomenon occurs. During this process, the shape of the leading bubble becomes oblate while the shape of the trailing bubble is stretched in a vertical direction. Thus, the coalescence time and position of two successive bubbles generally increase with increasing the surface tension of the liquid and reducing its viscosity.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2017.11.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Air bubbles ; Bubble coalescence ; Bubbles ; Coalescing ; Computer simulation ; Deformation ; Fluid mechanics ; Mechanics ; Numerical analysis ; Physical properties ; Physics ; Single bubble dynamics ; Studies ; Surface tension ; Trajectories ; Two-phase flows ; Velocity distribution ; Viscosity ; Volume of fluid method ; Wake effect</subject><ispartof>Computers &amp; fluids, 2018-01, Vol.161, p.47-59</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-dfa56b7d1dbc1192d7e6cef1c97fc868d62cb3bb0955b3e3c4c3f66e6fcf880e3</citedby><cites>FETCH-LOGICAL-c377t-dfa56b7d1dbc1192d7e6cef1c97fc868d62cb3bb0955b3e3c4c3f66e6fcf880e3</cites><orcidid>0000-0001-5420-8315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2017.11.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02085874$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbassi, W.</creatorcontrib><creatorcontrib>Besbes, S.</creatorcontrib><creatorcontrib>Elhajem, M.</creatorcontrib><creatorcontrib>Aissia, H. Ben</creatorcontrib><creatorcontrib>Champagne, J.Y.</creatorcontrib><title>Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)</title><title>Computers &amp; fluids</title><description>•The dynamics of a single air bubble, the coaxial coalescence of two successive bubbles are investigated using the VOF method.•The wake structure and the liquid phase velocity field has been also studied.•Effect of injection air velocity and liquid phase viscosity are studied The dynamics of a single air bubble, the wake structure, the instantaneous liquid velocity field around it and the coaxial coalescence of two successive bubbles have been widely studied in this work by using the VOF method on the software platform of Fluent. It is observed that the bubble rising trajectory changes from one dimension to three dimensions by decreasing the viscosity of the liquid phase. The different behaviors of air bubbles introduce various instantaneous bubbles wake structures which strongly depend on their shape and on the physical properties of the liquid phase. Indeed, as the solution viscosity decreases, the bubbles’ shape changes from non-deformed (ellipsoidal) to the deformed shape. In the case of bubbles chain, the wake of the leading bubble significantly affects the shape, trajectory and velocity of the trailing bubble, as well as the velocity field of the liquid phase surrounding it. For high orifice air velocities and due to the wake of the leading bubble, the trailing bubble accelerates and approaches to the leading bubble and finally coalescence phenomenon occurs. During this process, the shape of the leading bubble becomes oblate while the shape of the trailing bubble is stretched in a vertical direction. Thus, the coalescence time and position of two successive bubbles generally increase with increasing the surface tension of the liquid and reducing its viscosity.</description><subject>Air bubbles</subject><subject>Bubble coalescence</subject><subject>Bubbles</subject><subject>Coalescing</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Fluid mechanics</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Single bubble dynamics</subject><subject>Studies</subject><subject>Surface tension</subject><subject>Trajectories</subject><subject>Two-phase flows</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Volume of fluid method</subject><subject>Wake effect</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhq2KSiyF34AlLvSQ1JMPOzmuKtoirdoL5Wr5Y9z1KokXO1nBv8fpol45jTx-3lcz8xLyGVgJDPjNoTRhPLph8basGIgSoGTALsgGOtEXTDTiHdkw1rSF6Gv2nnxI6cDyu66aDZkflxGjN2qgyY_LoGYfJhocdRGRqmRwSmtHTZaaoH77DOY64PpjcCWVj1QvWuceXZKfXui8R3oKQ3Z-dVpHoyPO-2Dp159Pd9cfyaVTQ8JP_-oVeb779uP2odg93X-_3e4KUwsxF9aplmthwWoD0FdWIDfowPTCmY53lldG11qzvm11jbVpTO04R-6M6zqG9RW5Pvvu1SCP0Y8q_pFBefmw3cm1xyrWtZ1oTpDZL2f2GMOvBdMsD2GJUx5P5qtWjEPbVpkSZ8rEkFJE92YLTK5xyIN8i2MVCgkgcxxZuT0rMS988hhlMn49ofURzSxt8P_1-AuIapjg</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Abbassi, W.</creator><creator>Besbes, S.</creator><creator>Elhajem, M.</creator><creator>Aissia, H. Ben</creator><creator>Champagne, J.Y.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5420-8315</orcidid></search><sort><creationdate>20180115</creationdate><title>Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)</title><author>Abbassi, W. ; Besbes, S. ; Elhajem, M. ; Aissia, H. Ben ; Champagne, J.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-dfa56b7d1dbc1192d7e6cef1c97fc868d62cb3bb0955b3e3c4c3f66e6fcf880e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air bubbles</topic><topic>Bubble coalescence</topic><topic>Bubbles</topic><topic>Coalescing</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Fluid mechanics</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Single bubble dynamics</topic><topic>Studies</topic><topic>Surface tension</topic><topic>Trajectories</topic><topic>Two-phase flows</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Volume of fluid method</topic><topic>Wake effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbassi, W.</creatorcontrib><creatorcontrib>Besbes, S.</creatorcontrib><creatorcontrib>Elhajem, M.</creatorcontrib><creatorcontrib>Aissia, H. Ben</creatorcontrib><creatorcontrib>Champagne, J.Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbassi, W.</au><au>Besbes, S.</au><au>Elhajem, M.</au><au>Aissia, H. Ben</au><au>Champagne, J.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-01-15</date><risdate>2018</risdate><volume>161</volume><spage>47</spage><epage>59</epage><pages>47-59</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•The dynamics of a single air bubble, the coaxial coalescence of two successive bubbles are investigated using the VOF method.•The wake structure and the liquid phase velocity field has been also studied.•Effect of injection air velocity and liquid phase viscosity are studied The dynamics of a single air bubble, the wake structure, the instantaneous liquid velocity field around it and the coaxial coalescence of two successive bubbles have been widely studied in this work by using the VOF method on the software platform of Fluent. It is observed that the bubble rising trajectory changes from one dimension to three dimensions by decreasing the viscosity of the liquid phase. The different behaviors of air bubbles introduce various instantaneous bubbles wake structures which strongly depend on their shape and on the physical properties of the liquid phase. Indeed, as the solution viscosity decreases, the bubbles’ shape changes from non-deformed (ellipsoidal) to the deformed shape. In the case of bubbles chain, the wake of the leading bubble significantly affects the shape, trajectory and velocity of the trailing bubble, as well as the velocity field of the liquid phase surrounding it. For high orifice air velocities and due to the wake of the leading bubble, the trailing bubble accelerates and approaches to the leading bubble and finally coalescence phenomenon occurs. During this process, the shape of the leading bubble becomes oblate while the shape of the trailing bubble is stretched in a vertical direction. Thus, the coalescence time and position of two successive bubbles generally increase with increasing the surface tension of the liquid and reducing its viscosity.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2017.11.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5420-8315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-01, Vol.161, p.47-59
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_02085874v1
source Access via ScienceDirect (Elsevier)
subjects Air bubbles
Bubble coalescence
Bubbles
Coalescing
Computer simulation
Deformation
Fluid mechanics
Mechanics
Numerical analysis
Physical properties
Physics
Single bubble dynamics
Studies
Surface tension
Trajectories
Two-phase flows
Velocity distribution
Viscosity
Volume of fluid method
Wake effect
title Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20free%20ascension%20and%20coaxial%20coalescence%20of%20air%20bubbles%20using%20the%20volume%20of%20fluid%20method%20(VOF)&rft.jtitle=Computers%20&%20fluids&rft.au=Abbassi,%20W.&rft.date=2018-01-15&rft.volume=161&rft.spage=47&rft.epage=59&rft.pages=47-59&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2017.11.010&rft_dat=%3Cproquest_hal_p%3E2012061552%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012061552&rft_id=info:pmid/&rft_els_id=S0045793017304188&rfr_iscdi=true