Semi-algebraic Approximation Using Christoffel–Darboux Kernel

We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation 2021-12, Vol.54 (3), p.391-429
Hauptverfasser: Marx, Swann, Pauwels, Edouard, Weisser, Tillmann, Henrion, Didier, Lasserre, Jean Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue 3
container_start_page 391
container_title Constructive approximation
container_volume 54
creator Marx, Swann
Pauwels, Edouard
Weisser, Tillmann
Henrion, Didier
Lasserre, Jean Bernard
description We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.
doi_str_mv 10.1007/s00365-021-09535-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02085835v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599617519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRmBgM_o3jCVXlp4hKDNDZsh27TZUmxU5R2XgH3pAnwSUINqare_Wdo3sOAKcYXWCExGVEiOYcIoIhkpxyyPbAADNK0srQPhggLHLIiMgPwVGMS4QwL6gYgKsnt6qgrufOBF3ZbLReh3ZbrXRXtU02i1Uzz8aLUMWu9d7Vn-8f1zqYdrPNHlxoXH0MDryuozv5mUMwu715Hk_g9PHufjyaQkul6KAriRHU5wxb55njWhJSGuSMZNTIwmBtvXQ5dmVupdVCSCdM6bkt0mYopUNw3vsudK3WIT0Y3lSrKzUZTdXuhggqUiT-umPPejZFedm42KlluwlNek8RLmWOBccyUaSnbGhjDM7_2mKkdqWqvtTkjNV3qYolEe1FMcHN3IU_639UX_MHewE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599617519</pqid></control><display><type>article</type><title>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</title><source>SpringerNature Journals</source><creator>Marx, Swann ; Pauwels, Edouard ; Weisser, Tillmann ; Henrion, Didier ; Lasserre, Jean Bernard</creator><creatorcontrib>Marx, Swann ; Pauwels, Edouard ; Weisser, Tillmann ; Henrion, Didier ; Lasserre, Jean Bernard</creatorcontrib><description>We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.</description><identifier>ISSN: 0176-4276</identifier><identifier>EISSN: 1432-0940</identifier><identifier>DOI: 10.1007/s00365-021-09535-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Approximation ; Convergence ; Evaluation ; Gibbs phenomenon ; Kernels ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical integration ; Optimal control ; Optimization and Control ; Polynomials</subject><ispartof>Constructive approximation, 2021-12, Vol.54 (3), p.391-429</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</citedby><cites>FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</cites><orcidid>0000-0002-0722-3560 ; 0000-0002-8180-075X ; 0000-0003-0860-9913 ; 0000-0001-6735-7715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00365-021-09535-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00365-021-09535-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02085835$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marx, Swann</creatorcontrib><creatorcontrib>Pauwels, Edouard</creatorcontrib><creatorcontrib>Weisser, Tillmann</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Lasserre, Jean Bernard</creatorcontrib><title>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</title><title>Constructive approximation</title><addtitle>Constr Approx</addtitle><description>We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Evaluation</subject><subject>Gibbs phenomenon</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical integration</subject><subject>Optimal control</subject><subject>Optimization and Control</subject><subject>Polynomials</subject><issn>0176-4276</issn><issn>1432-0940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyRmBgM_o3jCVXlp4hKDNDZsh27TZUmxU5R2XgH3pAnwSUINqare_Wdo3sOAKcYXWCExGVEiOYcIoIhkpxyyPbAADNK0srQPhggLHLIiMgPwVGMS4QwL6gYgKsnt6qgrufOBF3ZbLReh3ZbrXRXtU02i1Uzz8aLUMWu9d7Vn-8f1zqYdrPNHlxoXH0MDryuozv5mUMwu715Hk_g9PHufjyaQkul6KAriRHU5wxb55njWhJSGuSMZNTIwmBtvXQ5dmVupdVCSCdM6bkt0mYopUNw3vsudK3WIT0Y3lSrKzUZTdXuhggqUiT-umPPejZFedm42KlluwlNek8RLmWOBccyUaSnbGhjDM7_2mKkdqWqvtTkjNV3qYolEe1FMcHN3IU_639UX_MHewE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Marx, Swann</creator><creator>Pauwels, Edouard</creator><creator>Weisser, Tillmann</creator><creator>Henrion, Didier</creator><creator>Lasserre, Jean Bernard</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0722-3560</orcidid><orcidid>https://orcid.org/0000-0002-8180-075X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9913</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid></search><sort><creationdate>20211201</creationdate><title>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</title><author>Marx, Swann ; Pauwels, Edouard ; Weisser, Tillmann ; Henrion, Didier ; Lasserre, Jean Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Evaluation</topic><topic>Gibbs phenomenon</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical integration</topic><topic>Optimal control</topic><topic>Optimization and Control</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marx, Swann</creatorcontrib><creatorcontrib>Pauwels, Edouard</creatorcontrib><creatorcontrib>Weisser, Tillmann</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Lasserre, Jean Bernard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Constructive approximation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marx, Swann</au><au>Pauwels, Edouard</au><au>Weisser, Tillmann</au><au>Henrion, Didier</au><au>Lasserre, Jean Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</atitle><jtitle>Constructive approximation</jtitle><stitle>Constr Approx</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>391</spage><epage>429</epage><pages>391-429</pages><issn>0176-4276</issn><eissn>1432-0940</eissn><abstract>We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00365-021-09535-4</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-0722-3560</orcidid><orcidid>https://orcid.org/0000-0002-8180-075X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9913</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0176-4276
ispartof Constructive approximation, 2021-12, Vol.54 (3), p.391-429
issn 0176-4276
1432-0940
language eng
recordid cdi_hal_primary_oai_HAL_hal_02085835v3
source SpringerNature Journals
subjects Algebra
Analysis
Approximation
Convergence
Evaluation
Gibbs phenomenon
Kernels
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical integration
Optimal control
Optimization and Control
Polynomials
title Semi-algebraic Approximation Using Christoffel–Darboux Kernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-algebraic%20Approximation%20Using%20Christoffel%E2%80%93Darboux%20Kernel&rft.jtitle=Constructive%20approximation&rft.au=Marx,%20Swann&rft.date=2021-12-01&rft.volume=54&rft.issue=3&rft.spage=391&rft.epage=429&rft.pages=391-429&rft.issn=0176-4276&rft.eissn=1432-0940&rft_id=info:doi/10.1007/s00365-021-09535-4&rft_dat=%3Cproquest_hal_p%3E2599617519%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599617519&rft_id=info:pmid/&rfr_iscdi=true