Semi-algebraic Approximation Using Christoffel–Darboux Kernel
We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approx...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 2021-12, Vol.54 (3), p.391-429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 429 |
---|---|
container_issue | 3 |
container_start_page | 391 |
container_title | Constructive approximation |
container_volume | 54 |
creator | Marx, Swann Pauwels, Edouard Weisser, Tillmann Henrion, Didier Lasserre, Jean Bernard |
description | We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions. |
doi_str_mv | 10.1007/s00365-021-09535-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02085835v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599617519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRmBgM_o3jCVXlp4hKDNDZsh27TZUmxU5R2XgH3pAnwSUINqare_Wdo3sOAKcYXWCExGVEiOYcIoIhkpxyyPbAADNK0srQPhggLHLIiMgPwVGMS4QwL6gYgKsnt6qgrufOBF3ZbLReh3ZbrXRXtU02i1Uzz8aLUMWu9d7Vn-8f1zqYdrPNHlxoXH0MDryuozv5mUMwu715Hk_g9PHufjyaQkul6KAriRHU5wxb55njWhJSGuSMZNTIwmBtvXQ5dmVupdVCSCdM6bkt0mYopUNw3vsudK3WIT0Y3lSrKzUZTdXuhggqUiT-umPPejZFedm42KlluwlNek8RLmWOBccyUaSnbGhjDM7_2mKkdqWqvtTkjNV3qYolEe1FMcHN3IU_639UX_MHewE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599617519</pqid></control><display><type>article</type><title>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</title><source>SpringerNature Journals</source><creator>Marx, Swann ; Pauwels, Edouard ; Weisser, Tillmann ; Henrion, Didier ; Lasserre, Jean Bernard</creator><creatorcontrib>Marx, Swann ; Pauwels, Edouard ; Weisser, Tillmann ; Henrion, Didier ; Lasserre, Jean Bernard</creatorcontrib><description>We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.</description><identifier>ISSN: 0176-4276</identifier><identifier>EISSN: 1432-0940</identifier><identifier>DOI: 10.1007/s00365-021-09535-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Approximation ; Convergence ; Evaluation ; Gibbs phenomenon ; Kernels ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical integration ; Optimal control ; Optimization and Control ; Polynomials</subject><ispartof>Constructive approximation, 2021-12, Vol.54 (3), p.391-429</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</citedby><cites>FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</cites><orcidid>0000-0002-0722-3560 ; 0000-0002-8180-075X ; 0000-0003-0860-9913 ; 0000-0001-6735-7715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00365-021-09535-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00365-021-09535-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02085835$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marx, Swann</creatorcontrib><creatorcontrib>Pauwels, Edouard</creatorcontrib><creatorcontrib>Weisser, Tillmann</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Lasserre, Jean Bernard</creatorcontrib><title>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</title><title>Constructive approximation</title><addtitle>Constr Approx</addtitle><description>We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Evaluation</subject><subject>Gibbs phenomenon</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical integration</subject><subject>Optimal control</subject><subject>Optimization and Control</subject><subject>Polynomials</subject><issn>0176-4276</issn><issn>1432-0940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyRmBgM_o3jCVXlp4hKDNDZsh27TZUmxU5R2XgH3pAnwSUINqare_Wdo3sOAKcYXWCExGVEiOYcIoIhkpxyyPbAADNK0srQPhggLHLIiMgPwVGMS4QwL6gYgKsnt6qgrufOBF3ZbLReh3ZbrXRXtU02i1Uzz8aLUMWu9d7Vn-8f1zqYdrPNHlxoXH0MDryuozv5mUMwu715Hk_g9PHufjyaQkul6KAriRHU5wxb55njWhJSGuSMZNTIwmBtvXQ5dmVupdVCSCdM6bkt0mYopUNw3vsudK3WIT0Y3lSrKzUZTdXuhggqUiT-umPPejZFedm42KlluwlNek8RLmWOBccyUaSnbGhjDM7_2mKkdqWqvtTkjNV3qYolEe1FMcHN3IU_639UX_MHewE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Marx, Swann</creator><creator>Pauwels, Edouard</creator><creator>Weisser, Tillmann</creator><creator>Henrion, Didier</creator><creator>Lasserre, Jean Bernard</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0722-3560</orcidid><orcidid>https://orcid.org/0000-0002-8180-075X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9913</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid></search><sort><creationdate>20211201</creationdate><title>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</title><author>Marx, Swann ; Pauwels, Edouard ; Weisser, Tillmann ; Henrion, Didier ; Lasserre, Jean Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ed2b73f641cef4e5a922db0eb943b98b1acf9e61ed6c9ca779e7bdf5c89cab333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Evaluation</topic><topic>Gibbs phenomenon</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical integration</topic><topic>Optimal control</topic><topic>Optimization and Control</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marx, Swann</creatorcontrib><creatorcontrib>Pauwels, Edouard</creatorcontrib><creatorcontrib>Weisser, Tillmann</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Lasserre, Jean Bernard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Constructive approximation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marx, Swann</au><au>Pauwels, Edouard</au><au>Weisser, Tillmann</au><au>Henrion, Didier</au><au>Lasserre, Jean Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-algebraic Approximation Using Christoffel–Darboux Kernel</atitle><jtitle>Constructive approximation</jtitle><stitle>Constr Approx</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>391</spage><epage>429</epage><pages>391-429</pages><issn>0176-4276</issn><eissn>1432-0940</eissn><abstract>We provide a new method to approximate a (possibly discontinuous) function using Christoffel–Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00365-021-09535-4</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-0722-3560</orcidid><orcidid>https://orcid.org/0000-0002-8180-075X</orcidid><orcidid>https://orcid.org/0000-0003-0860-9913</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0176-4276 |
ispartof | Constructive approximation, 2021-12, Vol.54 (3), p.391-429 |
issn | 0176-4276 1432-0940 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02085835v3 |
source | SpringerNature Journals |
subjects | Algebra Analysis Approximation Convergence Evaluation Gibbs phenomenon Kernels Mathematics Mathematics and Statistics Numerical Analysis Numerical integration Optimal control Optimization and Control Polynomials |
title | Semi-algebraic Approximation Using Christoffel–Darboux Kernel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-algebraic%20Approximation%20Using%20Christoffel%E2%80%93Darboux%20Kernel&rft.jtitle=Constructive%20approximation&rft.au=Marx,%20Swann&rft.date=2021-12-01&rft.volume=54&rft.issue=3&rft.spage=391&rft.epage=429&rft.pages=391-429&rft.issn=0176-4276&rft.eissn=1432-0940&rft_id=info:doi/10.1007/s00365-021-09535-4&rft_dat=%3Cproquest_hal_p%3E2599617519%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599617519&rft_id=info:pmid/&rfr_iscdi=true |