Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival
Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative...
Gespeichert in:
Veröffentlicht in: | Brain stimulation 2018-11, Vol.11 (6), p.1336-1347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1347 |
---|---|
container_issue | 6 |
container_start_page | 1336 |
container_title | Brain stimulation |
container_volume | 11 |
creator | Jonckheere, Julie Deloulme, Jean-Christophe Dall’Igna, Gaëlle Chauliac, Nicolas Pelluet, Albane Nguon, Anne-Sophie Lentini, Celia Brocard, Jacques Denarier, Eric Brugière, Sabine Couté, Yohann Heinrich, Christophe Porcher, Christophe Holtzmann, Jérôme Andrieux, Annie Suaud-Chagny, Marie-Françoise Gory-Fauré, Sylvie |
description | Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood.
Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT.
Using MAP6 KO mouse, a genetic model that constitutively exhibits features relevant to some aspects of depression; we analyzed the behavioral and biological consequences of ECS treatment alone (10 stimulations over a 2-week period) and associated with a continuation protocol (2 stimulations per week for 5 weeks).
ECS treatment had a beneficial effect on constitutive behavioral defects. We showed that behavioral improvement is associated with a strong increase in the survival and integration of neurons born before ECS treatment. Retroviral infection revealed the larger number of integrated neurons to exhibit increased dendritic complexity and spine density, as well as remodeled synapses. Furthermore, our results show that ECS triggers a cortical increase in synaptogenesis. A sustained newborn neuron survival rate, induced by ECS treatment, is associated with the behavioral improvement, but relapse occurred 40 days after completing the ECS treatment. However, a 5-week continuation protocol following the initial ECS treatment led to persistent improvement of behavior correlated with sustained rate survival of newborn neurons.
Altogether, these results reveal that increased synaptic connectivity and extended neuronal survival are key to the short and long-term efficacy of ECS.
•Constitutive behavioral and biological defects of MAP6 KO mice respond to ECS treatment.•ECS efficacy relies on a high survival and integration rate of newborn neurons.•ECS continuation protocols efficacy depend on constant integration of adult neurons. |
doi_str_mv | 10.1016/j.brs.2018.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02082950v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1935861X18302845</els_id><sourcerecordid>2094432709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-24d214f67d7b511b6ed9eab04c353dd0801de626fce44b8838a6f80db80374283</originalsourceid><addsrcrecordid>eNp9kcGK1TAUhoMozjj6AG4kS130etKkbaqrYVBHuODCEdyFNDn15pIm16QtzAv43KbccZbCgRxOvv_nJD8hrxnsGLD2_XE3pLyrgckdlAL2hFwy2bWV6BrxtPQ9byrZsp8X5EXOR4Cm72X3nFxwYKIVtbwkf74fYporqoOlPoZf1YxpojiOzmhzT-NI0aOZUzQxrIvPbkWaZzctXs8uBupCkbpJezpFiz5vCounhDmX6w_07oC09BhmV5gUPW5EwCXFUAZ5SatbtX9Jno3aZ3z1cF6RH58_3d3cVvtvX77eXO8rIzjMVS1szcTYdrYbGsaGFm2PegBheMOtBQnMYlu3o0EhBim51O0owQ4SeFfey6_Iu7PvQXt1SmXxdK-idur2eq-2GdQg676BlRX27Zk9pfh7wTyryWWD3uuAccmqhl4IXnfQF5SdUZNizgnHR28GaotKHVWJSm1RKSgFm_2bB_tlmNA-Kv5lU4CPZ6B8K64Ok8rGYTBoXSqRKBvdf-z_As0kpec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094432709</pqid></control><display><type>article</type><title>Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jonckheere, Julie ; Deloulme, Jean-Christophe ; Dall’Igna, Gaëlle ; Chauliac, Nicolas ; Pelluet, Albane ; Nguon, Anne-Sophie ; Lentini, Celia ; Brocard, Jacques ; Denarier, Eric ; Brugière, Sabine ; Couté, Yohann ; Heinrich, Christophe ; Porcher, Christophe ; Holtzmann, Jérôme ; Andrieux, Annie ; Suaud-Chagny, Marie-Françoise ; Gory-Fauré, Sylvie</creator><creatorcontrib>Jonckheere, Julie ; Deloulme, Jean-Christophe ; Dall’Igna, Gaëlle ; Chauliac, Nicolas ; Pelluet, Albane ; Nguon, Anne-Sophie ; Lentini, Celia ; Brocard, Jacques ; Denarier, Eric ; Brugière, Sabine ; Couté, Yohann ; Heinrich, Christophe ; Porcher, Christophe ; Holtzmann, Jérôme ; Andrieux, Annie ; Suaud-Chagny, Marie-Françoise ; Gory-Fauré, Sylvie</creatorcontrib><description>Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood.
Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT.
Using MAP6 KO mouse, a genetic model that constitutively exhibits features relevant to some aspects of depression; we analyzed the behavioral and biological consequences of ECS treatment alone (10 stimulations over a 2-week period) and associated with a continuation protocol (2 stimulations per week for 5 weeks).
ECS treatment had a beneficial effect on constitutive behavioral defects. We showed that behavioral improvement is associated with a strong increase in the survival and integration of neurons born before ECS treatment. Retroviral infection revealed the larger number of integrated neurons to exhibit increased dendritic complexity and spine density, as well as remodeled synapses. Furthermore, our results show that ECS triggers a cortical increase in synaptogenesis. A sustained newborn neuron survival rate, induced by ECS treatment, is associated with the behavioral improvement, but relapse occurred 40 days after completing the ECS treatment. However, a 5-week continuation protocol following the initial ECS treatment led to persistent improvement of behavior correlated with sustained rate survival of newborn neurons.
Altogether, these results reveal that increased synaptic connectivity and extended neuronal survival are key to the short and long-term efficacy of ECS.
•Constitutive behavioral and biological defects of MAP6 KO mice respond to ECS treatment.•ECS efficacy relies on a high survival and integration rate of newborn neurons.•ECS continuation protocols efficacy depend on constant integration of adult neurons.</description><identifier>ISSN: 1935-861X</identifier><identifier>EISSN: 1876-4754</identifier><identifier>DOI: 10.1016/j.brs.2018.08.001</identifier><identifier>PMID: 30146428</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult neurogenesis ; Animals ; Antidepressant ; Biochemistry, Molecular Biology ; Cell Survival - physiology ; Depression - genetics ; Depression - metabolism ; Depression - therapy ; Disease Models, Animal ; ECS ; ECT ; Electroconvulsive Therapy - methods ; Genomics ; Hippocampus - cytology ; Hippocampus - physiology ; Life Sciences ; Male ; MAP6 KO mice ; Mice ; Mice, Knockout ; Microtubule-Associated Proteins - deficiency ; Microtubule-Associated Proteins - genetics ; Neurogenesis - physiology ; Neurons - physiology ; Neuroplasticity ; Time Factors ; Treatment Outcome</subject><ispartof>Brain stimulation, 2018-11, Vol.11 (6), p.1336-1347</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-24d214f67d7b511b6ed9eab04c353dd0801de626fce44b8838a6f80db80374283</citedby><cites>FETCH-LOGICAL-c430t-24d214f67d7b511b6ed9eab04c353dd0801de626fce44b8838a6f80db80374283</cites><orcidid>0000-0002-4169-397X ; 0000-0002-2587-0681 ; 0000-0002-7503-4796 ; 0000-0002-4022-6405 ; 0000-0003-3896-6196 ; 0000-0003-1266-718X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1935861X18302845$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30146428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02082950$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jonckheere, Julie</creatorcontrib><creatorcontrib>Deloulme, Jean-Christophe</creatorcontrib><creatorcontrib>Dall’Igna, Gaëlle</creatorcontrib><creatorcontrib>Chauliac, Nicolas</creatorcontrib><creatorcontrib>Pelluet, Albane</creatorcontrib><creatorcontrib>Nguon, Anne-Sophie</creatorcontrib><creatorcontrib>Lentini, Celia</creatorcontrib><creatorcontrib>Brocard, Jacques</creatorcontrib><creatorcontrib>Denarier, Eric</creatorcontrib><creatorcontrib>Brugière, Sabine</creatorcontrib><creatorcontrib>Couté, Yohann</creatorcontrib><creatorcontrib>Heinrich, Christophe</creatorcontrib><creatorcontrib>Porcher, Christophe</creatorcontrib><creatorcontrib>Holtzmann, Jérôme</creatorcontrib><creatorcontrib>Andrieux, Annie</creatorcontrib><creatorcontrib>Suaud-Chagny, Marie-Françoise</creatorcontrib><creatorcontrib>Gory-Fauré, Sylvie</creatorcontrib><title>Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival</title><title>Brain stimulation</title><addtitle>Brain Stimul</addtitle><description>Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood.
Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT.
Using MAP6 KO mouse, a genetic model that constitutively exhibits features relevant to some aspects of depression; we analyzed the behavioral and biological consequences of ECS treatment alone (10 stimulations over a 2-week period) and associated with a continuation protocol (2 stimulations per week for 5 weeks).
ECS treatment had a beneficial effect on constitutive behavioral defects. We showed that behavioral improvement is associated with a strong increase in the survival and integration of neurons born before ECS treatment. Retroviral infection revealed the larger number of integrated neurons to exhibit increased dendritic complexity and spine density, as well as remodeled synapses. Furthermore, our results show that ECS triggers a cortical increase in synaptogenesis. A sustained newborn neuron survival rate, induced by ECS treatment, is associated with the behavioral improvement, but relapse occurred 40 days after completing the ECS treatment. However, a 5-week continuation protocol following the initial ECS treatment led to persistent improvement of behavior correlated with sustained rate survival of newborn neurons.
Altogether, these results reveal that increased synaptic connectivity and extended neuronal survival are key to the short and long-term efficacy of ECS.
•Constitutive behavioral and biological defects of MAP6 KO mice respond to ECS treatment.•ECS efficacy relies on a high survival and integration rate of newborn neurons.•ECS continuation protocols efficacy depend on constant integration of adult neurons.</description><subject>Adult neurogenesis</subject><subject>Animals</subject><subject>Antidepressant</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Survival - physiology</subject><subject>Depression - genetics</subject><subject>Depression - metabolism</subject><subject>Depression - therapy</subject><subject>Disease Models, Animal</subject><subject>ECS</subject><subject>ECT</subject><subject>Electroconvulsive Therapy - methods</subject><subject>Genomics</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>MAP6 KO mice</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microtubule-Associated Proteins - deficiency</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><issn>1935-861X</issn><issn>1876-4754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGK1TAUhoMozjj6AG4kS130etKkbaqrYVBHuODCEdyFNDn15pIm16QtzAv43KbccZbCgRxOvv_nJD8hrxnsGLD2_XE3pLyrgckdlAL2hFwy2bWV6BrxtPQ9byrZsp8X5EXOR4Cm72X3nFxwYKIVtbwkf74fYporqoOlPoZf1YxpojiOzmhzT-NI0aOZUzQxrIvPbkWaZzctXs8uBupCkbpJezpFiz5vCounhDmX6w_07oC09BhmV5gUPW5EwCXFUAZ5SatbtX9Jno3aZ3z1cF6RH58_3d3cVvtvX77eXO8rIzjMVS1szcTYdrYbGsaGFm2PegBheMOtBQnMYlu3o0EhBim51O0owQ4SeFfey6_Iu7PvQXt1SmXxdK-idur2eq-2GdQg676BlRX27Zk9pfh7wTyryWWD3uuAccmqhl4IXnfQF5SdUZNizgnHR28GaotKHVWJSm1RKSgFm_2bB_tlmNA-Kv5lU4CPZ6B8K64Ok8rGYTBoXSqRKBvdf-z_As0kpec</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Jonckheere, Julie</creator><creator>Deloulme, Jean-Christophe</creator><creator>Dall’Igna, Gaëlle</creator><creator>Chauliac, Nicolas</creator><creator>Pelluet, Albane</creator><creator>Nguon, Anne-Sophie</creator><creator>Lentini, Celia</creator><creator>Brocard, Jacques</creator><creator>Denarier, Eric</creator><creator>Brugière, Sabine</creator><creator>Couté, Yohann</creator><creator>Heinrich, Christophe</creator><creator>Porcher, Christophe</creator><creator>Holtzmann, Jérôme</creator><creator>Andrieux, Annie</creator><creator>Suaud-Chagny, Marie-Françoise</creator><creator>Gory-Fauré, Sylvie</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4169-397X</orcidid><orcidid>https://orcid.org/0000-0002-2587-0681</orcidid><orcidid>https://orcid.org/0000-0002-7503-4796</orcidid><orcidid>https://orcid.org/0000-0002-4022-6405</orcidid><orcidid>https://orcid.org/0000-0003-3896-6196</orcidid><orcidid>https://orcid.org/0000-0003-1266-718X</orcidid></search><sort><creationdate>201811</creationdate><title>Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival</title><author>Jonckheere, Julie ; Deloulme, Jean-Christophe ; Dall’Igna, Gaëlle ; Chauliac, Nicolas ; Pelluet, Albane ; Nguon, Anne-Sophie ; Lentini, Celia ; Brocard, Jacques ; Denarier, Eric ; Brugière, Sabine ; Couté, Yohann ; Heinrich, Christophe ; Porcher, Christophe ; Holtzmann, Jérôme ; Andrieux, Annie ; Suaud-Chagny, Marie-Françoise ; Gory-Fauré, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-24d214f67d7b511b6ed9eab04c353dd0801de626fce44b8838a6f80db80374283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult neurogenesis</topic><topic>Animals</topic><topic>Antidepressant</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Survival - physiology</topic><topic>Depression - genetics</topic><topic>Depression - metabolism</topic><topic>Depression - therapy</topic><topic>Disease Models, Animal</topic><topic>ECS</topic><topic>ECT</topic><topic>Electroconvulsive Therapy - methods</topic><topic>Genomics</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>MAP6 KO mice</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microtubule-Associated Proteins - deficiency</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonckheere, Julie</creatorcontrib><creatorcontrib>Deloulme, Jean-Christophe</creatorcontrib><creatorcontrib>Dall’Igna, Gaëlle</creatorcontrib><creatorcontrib>Chauliac, Nicolas</creatorcontrib><creatorcontrib>Pelluet, Albane</creatorcontrib><creatorcontrib>Nguon, Anne-Sophie</creatorcontrib><creatorcontrib>Lentini, Celia</creatorcontrib><creatorcontrib>Brocard, Jacques</creatorcontrib><creatorcontrib>Denarier, Eric</creatorcontrib><creatorcontrib>Brugière, Sabine</creatorcontrib><creatorcontrib>Couté, Yohann</creatorcontrib><creatorcontrib>Heinrich, Christophe</creatorcontrib><creatorcontrib>Porcher, Christophe</creatorcontrib><creatorcontrib>Holtzmann, Jérôme</creatorcontrib><creatorcontrib>Andrieux, Annie</creatorcontrib><creatorcontrib>Suaud-Chagny, Marie-Françoise</creatorcontrib><creatorcontrib>Gory-Fauré, Sylvie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Brain stimulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonckheere, Julie</au><au>Deloulme, Jean-Christophe</au><au>Dall’Igna, Gaëlle</au><au>Chauliac, Nicolas</au><au>Pelluet, Albane</au><au>Nguon, Anne-Sophie</au><au>Lentini, Celia</au><au>Brocard, Jacques</au><au>Denarier, Eric</au><au>Brugière, Sabine</au><au>Couté, Yohann</au><au>Heinrich, Christophe</au><au>Porcher, Christophe</au><au>Holtzmann, Jérôme</au><au>Andrieux, Annie</au><au>Suaud-Chagny, Marie-Françoise</au><au>Gory-Fauré, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival</atitle><jtitle>Brain stimulation</jtitle><addtitle>Brain Stimul</addtitle><date>2018-11</date><risdate>2018</risdate><volume>11</volume><issue>6</issue><spage>1336</spage><epage>1347</epage><pages>1336-1347</pages><issn>1935-861X</issn><eissn>1876-4754</eissn><abstract>Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood.
Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT.
Using MAP6 KO mouse, a genetic model that constitutively exhibits features relevant to some aspects of depression; we analyzed the behavioral and biological consequences of ECS treatment alone (10 stimulations over a 2-week period) and associated with a continuation protocol (2 stimulations per week for 5 weeks).
ECS treatment had a beneficial effect on constitutive behavioral defects. We showed that behavioral improvement is associated with a strong increase in the survival and integration of neurons born before ECS treatment. Retroviral infection revealed the larger number of integrated neurons to exhibit increased dendritic complexity and spine density, as well as remodeled synapses. Furthermore, our results show that ECS triggers a cortical increase in synaptogenesis. A sustained newborn neuron survival rate, induced by ECS treatment, is associated with the behavioral improvement, but relapse occurred 40 days after completing the ECS treatment. However, a 5-week continuation protocol following the initial ECS treatment led to persistent improvement of behavior correlated with sustained rate survival of newborn neurons.
Altogether, these results reveal that increased synaptic connectivity and extended neuronal survival are key to the short and long-term efficacy of ECS.
•Constitutive behavioral and biological defects of MAP6 KO mice respond to ECS treatment.•ECS efficacy relies on a high survival and integration rate of newborn neurons.•ECS continuation protocols efficacy depend on constant integration of adult neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30146428</pmid><doi>10.1016/j.brs.2018.08.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4169-397X</orcidid><orcidid>https://orcid.org/0000-0002-2587-0681</orcidid><orcidid>https://orcid.org/0000-0002-7503-4796</orcidid><orcidid>https://orcid.org/0000-0002-4022-6405</orcidid><orcidid>https://orcid.org/0000-0003-3896-6196</orcidid><orcidid>https://orcid.org/0000-0003-1266-718X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-861X |
ispartof | Brain stimulation, 2018-11, Vol.11 (6), p.1336-1347 |
issn | 1935-861X 1876-4754 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02082950v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult neurogenesis Animals Antidepressant Biochemistry, Molecular Biology Cell Survival - physiology Depression - genetics Depression - metabolism Depression - therapy Disease Models, Animal ECS ECT Electroconvulsive Therapy - methods Genomics Hippocampus - cytology Hippocampus - physiology Life Sciences Male MAP6 KO mice Mice Mice, Knockout Microtubule-Associated Proteins - deficiency Microtubule-Associated Proteins - genetics Neurogenesis - physiology Neurons - physiology Neuroplasticity Time Factors Treatment Outcome |
title | Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-%20and%20long-term%20efficacy%20of%20electroconvulsive%20stimulation%20in%20animal%20models%20of%20depression:%20The%20essential%20role%20of%20neuronal%20survival&rft.jtitle=Brain%20stimulation&rft.au=Jonckheere,%20Julie&rft.date=2018-11&rft.volume=11&rft.issue=6&rft.spage=1336&rft.epage=1347&rft.pages=1336-1347&rft.issn=1935-861X&rft.eissn=1876-4754&rft_id=info:doi/10.1016/j.brs.2018.08.001&rft_dat=%3Cproquest_hal_p%3E2094432709%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094432709&rft_id=info:pmid/30146428&rft_els_id=S1935861X18302845&rfr_iscdi=true |