A general drift estimation procedure for stochastic differential equations with additive fractional noise

In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of statistics 2020-01, Vol.14 (1), p.1075-1136
Hauptverfasser: Panloup, Fabien, Tindel, Samy, Varvenne, Maylis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1136
container_issue 1
container_start_page 1075
container_title Electronic journal of statistics
container_volume 14
creator Panloup, Fabien
Tindel, Samy
Varvenne, Maylis
description In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.
doi_str_mv 10.1214/20-EJS1685
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02077420v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02077420v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-fafaaa78de9d6d4a36223ff25e54a1ae7965885832ba530760d42fefa0b15a3b3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKsXf0GuCqvJZJPdHkupVil4UM9hupnYSN2tSVrx37u1RTzN8OZ7A-8xdinFjQRZ3oIopo_P0tT6iA3kSOmi0lAe_9tP2VlK70LoGowZsDDmb9RSxBV3MfjMKeXwgTl0LV_HriG3icR9F3nKXbPE_tpwF7ynSG0OvY0-N7944l8hLzk6F3LY9p6IzU7vkbYLic7ZicdVoovDHLLXu-nLZFbMn-4fJuN50YCSufDoEbGqHY2ccSUqA6C8B026RIlUjYyua10rWKBWojLCleDJo1hIjWqhhuxq_3eJK7uOfZj4bTsMdjae250mQFRVCWILPXu9Z5vYpRTJ_xmksLtCLQh7KFT9ANbgamg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A general drift estimation procedure for stochastic differential equations with additive fractional noise</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><creator>Panloup, Fabien ; Tindel, Samy ; Varvenne, Maylis</creator><creatorcontrib>Panloup, Fabien ; Tindel, Samy ; Varvenne, Maylis</creatorcontrib><description>In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.</description><identifier>ISSN: 1935-7524</identifier><identifier>EISSN: 1935-7524</identifier><identifier>DOI: 10.1214/20-EJS1685</identifier><language>eng</language><publisher>Shaker Heights, OH : Institute of Mathematical Statistics</publisher><subject>Mathematics ; Probability ; Statistics</subject><ispartof>Electronic journal of statistics, 2020-01, Vol.14 (1), p.1075-1136</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-fafaaa78de9d6d4a36223ff25e54a1ae7965885832ba530760d42fefa0b15a3b3</citedby><cites>FETCH-LOGICAL-c231t-fafaaa78de9d6d4a36223ff25e54a1ae7965885832ba530760d42fefa0b15a3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,862,883,4012,27906,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02077420$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Panloup, Fabien</creatorcontrib><creatorcontrib>Tindel, Samy</creatorcontrib><creatorcontrib>Varvenne, Maylis</creatorcontrib><title>A general drift estimation procedure for stochastic differential equations with additive fractional noise</title><title>Electronic journal of statistics</title><description>In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.</description><subject>Mathematics</subject><subject>Probability</subject><subject>Statistics</subject><issn>1935-7524</issn><issn>1935-7524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKsXf0GuCqvJZJPdHkupVil4UM9hupnYSN2tSVrx37u1RTzN8OZ7A-8xdinFjQRZ3oIopo_P0tT6iA3kSOmi0lAe_9tP2VlK70LoGowZsDDmb9RSxBV3MfjMKeXwgTl0LV_HriG3icR9F3nKXbPE_tpwF7ynSG0OvY0-N7944l8hLzk6F3LY9p6IzU7vkbYLic7ZicdVoovDHLLXu-nLZFbMn-4fJuN50YCSufDoEbGqHY2ccSUqA6C8B026RIlUjYyua10rWKBWojLCleDJo1hIjWqhhuxq_3eJK7uOfZj4bTsMdjae250mQFRVCWILPXu9Z5vYpRTJ_xmksLtCLQh7KFT9ANbgamg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Panloup, Fabien</creator><creator>Tindel, Samy</creator><creator>Varvenne, Maylis</creator><general>Shaker Heights, OH : Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20200101</creationdate><title>A general drift estimation procedure for stochastic differential equations with additive fractional noise</title><author>Panloup, Fabien ; Tindel, Samy ; Varvenne, Maylis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-fafaaa78de9d6d4a36223ff25e54a1ae7965885832ba530760d42fefa0b15a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematics</topic><topic>Probability</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panloup, Fabien</creatorcontrib><creatorcontrib>Tindel, Samy</creatorcontrib><creatorcontrib>Varvenne, Maylis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panloup, Fabien</au><au>Tindel, Samy</au><au>Varvenne, Maylis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general drift estimation procedure for stochastic differential equations with additive fractional noise</atitle><jtitle>Electronic journal of statistics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>1075</spage><epage>1136</epage><pages>1075-1136</pages><issn>1935-7524</issn><eissn>1935-7524</eissn><abstract>In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.</abstract><pub>Shaker Heights, OH : Institute of Mathematical Statistics</pub><doi>10.1214/20-EJS1685</doi><tpages>62</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-7524
ispartof Electronic journal of statistics, 2020-01, Vol.14 (1), p.1075-1136
issn 1935-7524
1935-7524
language eng
recordid cdi_hal_primary_oai_HAL_hal_02077420v2
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access
subjects Mathematics
Probability
Statistics
title A general drift estimation procedure for stochastic differential equations with additive fractional noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20drift%20estimation%20procedure%20for%20stochastic%20differential%20equations%20with%20additive%20fractional%20noise&rft.jtitle=Electronic%20journal%20of%20statistics&rft.au=Panloup,%20Fabien&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=1075&rft.epage=1136&rft.pages=1075-1136&rft.issn=1935-7524&rft.eissn=1935-7524&rft_id=info:doi/10.1214/20-EJS1685&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02077420v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true