Gesture sequence recognition with one shot learned CRF/HMM hybrid model
In this paper, we propose a novel markovian hybrid system CRF/HMM for gesture recognition, and a novel motion description method called gesture signature for gesture characterisation. The gesture signature is computed using the optical flows in order to describe the location, velocity and orientatio...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2017-05, Vol.61, p.12-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 12 |
container_title | Image and vision computing |
container_volume | 61 |
creator | Belgacem, Selma Chatelain, Clément Paquet, Thierry |
description | In this paper, we propose a novel markovian hybrid system CRF/HMM for gesture recognition, and a novel motion description method called gesture signature for gesture characterisation. The gesture signature is computed using the optical flows in order to describe the location, velocity and orientation of the gesture global motion. We elaborated the proposed hybrid CRF/HMM model by combining the modeling ability of Hidden Markov Models and the discriminative ability of Conditional Random Fields. In the context of one-shot-learning, this model is applied to the recognition of gestures in videos. In this extreme case, the proposed framework achieves very interesting performance and remains independent from the moving object type, which suggest possible application to other motion-based recognition tasks.
•A hybrid CRF/HMM system for gesture recognition is proposed.•HMM and CRF advantages combination and disadvantages compensation.•Gesture Signature: an optical-flow-based gesture characterization model is proposed.•Evaluation on the Chalearn competition data set under a one-shot learning context. |
doi_str_mv | 10.1016/j.imavis.2017.02.003 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02075733v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885617300471</els_id><sourcerecordid>oai_HAL_hal_02075733v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-13c2769c69df7182ef89988487e436088e02509d92301e11074f622e37edafef3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKf_wIe8-tDuJuma9EUYQzdhQxB9DrW5tRldo0k32b83peKjT_dy7zkHzkfILYOUActnu9Tuy6MNKQcmU-ApgDgjE6YkTxQT6pxMgOdxV_P8klyFsAMACbKYkNUKQ3_wSAN-HbCrkHqs3Edne-s6-m37hroufhvX0xZL36Ghy5fH2Xq7pc3p3VtD985ge00u6rINePM7p-Tt8eF1uU42z6un5WKTVCKDPmGi4jIvqrwwtWSKY62KQqlMScxEDkoh8DkUpuACGDIGMqtzzlFINGWNtZiSuzG3KVv96WNvf9KutHq92OjhBhzkXApxZFGbjdrKuxA81n8GBnoAp3d6BKcHcNGqI7houx9tGHscLXodKjugMTay6bVx9v-AH5_zdrY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gesture sequence recognition with one shot learned CRF/HMM hybrid model</title><source>Elsevier ScienceDirect Journals</source><creator>Belgacem, Selma ; Chatelain, Clément ; Paquet, Thierry</creator><creatorcontrib>Belgacem, Selma ; Chatelain, Clément ; Paquet, Thierry</creatorcontrib><description>In this paper, we propose a novel markovian hybrid system CRF/HMM for gesture recognition, and a novel motion description method called gesture signature for gesture characterisation. The gesture signature is computed using the optical flows in order to describe the location, velocity and orientation of the gesture global motion. We elaborated the proposed hybrid CRF/HMM model by combining the modeling ability of Hidden Markov Models and the discriminative ability of Conditional Random Fields. In the context of one-shot-learning, this model is applied to the recognition of gestures in videos. In this extreme case, the proposed framework achieves very interesting performance and remains independent from the moving object type, which suggest possible application to other motion-based recognition tasks.
•A hybrid CRF/HMM system for gesture recognition is proposed.•HMM and CRF advantages combination and disadvantages compensation.•Gesture Signature: an optical-flow-based gesture characterization model is proposed.•Evaluation on the Chalearn competition data set under a one-shot learning context.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2017.02.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Computer Vision and Pattern Recognition ; Conditional random field ; Gesture characterisation ; Gesture recognition ; Hidden Markov model ; Hybrid system ; One-shot-learning</subject><ispartof>Image and vision computing, 2017-05, Vol.61, p.12-21</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-13c2769c69df7182ef89988487e436088e02509d92301e11074f622e37edafef3</citedby><cites>FETCH-LOGICAL-c340t-13c2769c69df7182ef89988487e436088e02509d92301e11074f622e37edafef3</cites><orcidid>0000-0002-2044-7542 ; 0000-0001-8377-0630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0262885617300471$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02075733$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belgacem, Selma</creatorcontrib><creatorcontrib>Chatelain, Clément</creatorcontrib><creatorcontrib>Paquet, Thierry</creatorcontrib><title>Gesture sequence recognition with one shot learned CRF/HMM hybrid model</title><title>Image and vision computing</title><description>In this paper, we propose a novel markovian hybrid system CRF/HMM for gesture recognition, and a novel motion description method called gesture signature for gesture characterisation. The gesture signature is computed using the optical flows in order to describe the location, velocity and orientation of the gesture global motion. We elaborated the proposed hybrid CRF/HMM model by combining the modeling ability of Hidden Markov Models and the discriminative ability of Conditional Random Fields. In the context of one-shot-learning, this model is applied to the recognition of gestures in videos. In this extreme case, the proposed framework achieves very interesting performance and remains independent from the moving object type, which suggest possible application to other motion-based recognition tasks.
•A hybrid CRF/HMM system for gesture recognition is proposed.•HMM and CRF advantages combination and disadvantages compensation.•Gesture Signature: an optical-flow-based gesture characterization model is proposed.•Evaluation on the Chalearn competition data set under a one-shot learning context.</description><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Conditional random field</subject><subject>Gesture characterisation</subject><subject>Gesture recognition</subject><subject>Hidden Markov model</subject><subject>Hybrid system</subject><subject>One-shot-learning</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKf_wIe8-tDuJuma9EUYQzdhQxB9DrW5tRldo0k32b83peKjT_dy7zkHzkfILYOUActnu9Tuy6MNKQcmU-ApgDgjE6YkTxQT6pxMgOdxV_P8klyFsAMACbKYkNUKQ3_wSAN-HbCrkHqs3Edne-s6-m37hroufhvX0xZL36Ghy5fH2Xq7pc3p3VtD985ge00u6rINePM7p-Tt8eF1uU42z6un5WKTVCKDPmGi4jIvqrwwtWSKY62KQqlMScxEDkoh8DkUpuACGDIGMqtzzlFINGWNtZiSuzG3KVv96WNvf9KutHq92OjhBhzkXApxZFGbjdrKuxA81n8GBnoAp3d6BKcHcNGqI7houx9tGHscLXodKjugMTay6bVx9v-AH5_zdrY</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Belgacem, Selma</creator><creator>Chatelain, Clément</creator><creator>Paquet, Thierry</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2044-7542</orcidid><orcidid>https://orcid.org/0000-0001-8377-0630</orcidid></search><sort><creationdate>201705</creationdate><title>Gesture sequence recognition with one shot learned CRF/HMM hybrid model</title><author>Belgacem, Selma ; Chatelain, Clément ; Paquet, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-13c2769c69df7182ef89988487e436088e02509d92301e11074f622e37edafef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Conditional random field</topic><topic>Gesture characterisation</topic><topic>Gesture recognition</topic><topic>Hidden Markov model</topic><topic>Hybrid system</topic><topic>One-shot-learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belgacem, Selma</creatorcontrib><creatorcontrib>Chatelain, Clément</creatorcontrib><creatorcontrib>Paquet, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belgacem, Selma</au><au>Chatelain, Clément</au><au>Paquet, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gesture sequence recognition with one shot learned CRF/HMM hybrid model</atitle><jtitle>Image and vision computing</jtitle><date>2017-05</date><risdate>2017</risdate><volume>61</volume><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>In this paper, we propose a novel markovian hybrid system CRF/HMM for gesture recognition, and a novel motion description method called gesture signature for gesture characterisation. The gesture signature is computed using the optical flows in order to describe the location, velocity and orientation of the gesture global motion. We elaborated the proposed hybrid CRF/HMM model by combining the modeling ability of Hidden Markov Models and the discriminative ability of Conditional Random Fields. In the context of one-shot-learning, this model is applied to the recognition of gestures in videos. In this extreme case, the proposed framework achieves very interesting performance and remains independent from the moving object type, which suggest possible application to other motion-based recognition tasks.
•A hybrid CRF/HMM system for gesture recognition is proposed.•HMM and CRF advantages combination and disadvantages compensation.•Gesture Signature: an optical-flow-based gesture characterization model is proposed.•Evaluation on the Chalearn competition data set under a one-shot learning context.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2017.02.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2044-7542</orcidid><orcidid>https://orcid.org/0000-0001-8377-0630</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2017-05, Vol.61, p.12-21 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02075733v1 |
source | Elsevier ScienceDirect Journals |
subjects | Computer Science Computer Vision and Pattern Recognition Conditional random field Gesture characterisation Gesture recognition Hidden Markov model Hybrid system One-shot-learning |
title | Gesture sequence recognition with one shot learned CRF/HMM hybrid model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gesture%20sequence%20recognition%20with%20one%20shot%20learned%20CRF/HMM%20hybrid%20model&rft.jtitle=Image%20and%20vision%20computing&rft.au=Belgacem,%20Selma&rft.date=2017-05&rft.volume=61&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2017.02.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02075733v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0262885617300471&rfr_iscdi=true |