Free monoids and generalized metric spaces
Let A be an ordered alphabet, A∗ be the free monoid over A ordered by the Higman ordering, and let F(A∗) be the set of final segments of A∗. With the operation of concatenation, this set is a monoid. We show that the submonoid F∘(A∗)≔F(A∗)∖{0̸} is free. The MacNeille completion N(A∗) of A∗ is a subm...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2019-08, Vol.80, p.339-360 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | |
container_start_page | 339 |
container_title | European journal of combinatorics |
container_volume | 80 |
creator | Kabil, Mustapha Pouzet, Maurice G. Rosenberg, Ivo |
description | Let A be an ordered alphabet, A∗ be the free monoid over A ordered by the Higman ordering, and let F(A∗) be the set of final segments of A∗. With the operation of concatenation, this set is a monoid. We show that the submonoid F∘(A∗)≔F(A∗)∖{0̸} is free. The MacNeille completion N(A∗) of A∗ is a submonoid of F(A∗). As a corollary, we obtain that the monoid N∘(A∗)≔N(A∗)∖{0̸} is free. We give an interpretation of the freeness of F∘(A∗) in the category of metric spaces over the Heyting algebra V≔F(A∗), with the non-expansive mappings as morphisms. Each final segment F of A∗ yields the injective envelope SF of a two-element metric space over V. The uniqueness of the decomposition of F is due to the uniqueness of the block decomposition of the graph GF associated to this injective envelope. |
doi_str_mv | 10.1016/j.ejc.2018.02.008 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02071721v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669818300210</els_id><sourcerecordid>S0195669818300210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-8e44d82a47faa0f07f04a382c9c4ccddac018cc51b410fbfd555116acc8334f03</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFYfwFuuCokzySbZ4KkUa4WCFz0v29lZ3dAmZbcU9OndUvHoaYbh_4aZT4hbhAIBm4e-4J6KElAVUBYA6kxMELo677oWz8UEMPVN06lLcRVjD4BYV9VE3C8Cc7Ydh9HbmJnBZh88cDAb_8022_I-eMrizhDHa3HhzCbyzW-divfF09t8ma9en1_ms1VOVSv3uWIprSqNbJ0x4KB1IE2lSupIEllrKB1JVONaIri1s3VdIzaGSFWVdFBNxd1p76fZ6F3wWxO-9Gi8Xs5W-jiDElpsSzxgyuIpS2GMMbD7AxD0UYzudRKjj2ISp5OYxDyeGE5PHDwHHcnzQGx9YNprO_p_6B-B1moD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free monoids and generalized metric spaces</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kabil, Mustapha ; Pouzet, Maurice ; G. Rosenberg, Ivo</creator><creatorcontrib>Kabil, Mustapha ; Pouzet, Maurice ; G. Rosenberg, Ivo</creatorcontrib><description>Let A be an ordered alphabet, A∗ be the free monoid over A ordered by the Higman ordering, and let F(A∗) be the set of final segments of A∗. With the operation of concatenation, this set is a monoid. We show that the submonoid F∘(A∗)≔F(A∗)∖{0̸} is free. The MacNeille completion N(A∗) of A∗ is a submonoid of F(A∗). As a corollary, we obtain that the monoid N∘(A∗)≔N(A∗)∖{0̸} is free. We give an interpretation of the freeness of F∘(A∗) in the category of metric spaces over the Heyting algebra V≔F(A∗), with the non-expansive mappings as morphisms. Each final segment F of A∗ yields the injective envelope SF of a two-element metric space over V. The uniqueness of the decomposition of F is due to the uniqueness of the block decomposition of the graph GF associated to this injective envelope.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2018.02.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer Science ; Discrete Mathematics</subject><ispartof>European journal of combinatorics, 2019-08, Vol.80, p.339-360</ispartof><rights>2018 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-8e44d82a47faa0f07f04a382c9c4ccddac018cc51b410fbfd555116acc8334f03</citedby><cites>FETCH-LOGICAL-c374t-8e44d82a47faa0f07f04a382c9c4ccddac018cc51b410fbfd555116acc8334f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195669818300210$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02071721$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabil, Mustapha</creatorcontrib><creatorcontrib>Pouzet, Maurice</creatorcontrib><creatorcontrib>G. Rosenberg, Ivo</creatorcontrib><title>Free monoids and generalized metric spaces</title><title>European journal of combinatorics</title><description>Let A be an ordered alphabet, A∗ be the free monoid over A ordered by the Higman ordering, and let F(A∗) be the set of final segments of A∗. With the operation of concatenation, this set is a monoid. We show that the submonoid F∘(A∗)≔F(A∗)∖{0̸} is free. The MacNeille completion N(A∗) of A∗ is a submonoid of F(A∗). As a corollary, we obtain that the monoid N∘(A∗)≔N(A∗)∖{0̸} is free. We give an interpretation of the freeness of F∘(A∗) in the category of metric spaces over the Heyting algebra V≔F(A∗), with the non-expansive mappings as morphisms. Each final segment F of A∗ yields the injective envelope SF of a two-element metric space over V. The uniqueness of the decomposition of F is due to the uniqueness of the block decomposition of the graph GF associated to this injective envelope.</description><subject>Computer Science</subject><subject>Discrete Mathematics</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFYfwFuuCokzySbZ4KkUa4WCFz0v29lZ3dAmZbcU9OndUvHoaYbh_4aZT4hbhAIBm4e-4J6KElAVUBYA6kxMELo677oWz8UEMPVN06lLcRVjD4BYV9VE3C8Cc7Ydh9HbmJnBZh88cDAb_8022_I-eMrizhDHa3HhzCbyzW-divfF09t8ma9en1_ms1VOVSv3uWIprSqNbJ0x4KB1IE2lSupIEllrKB1JVONaIri1s3VdIzaGSFWVdFBNxd1p76fZ6F3wWxO-9Gi8Xs5W-jiDElpsSzxgyuIpS2GMMbD7AxD0UYzudRKjj2ISp5OYxDyeGE5PHDwHHcnzQGx9YNprO_p_6B-B1moD</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kabil, Mustapha</creator><creator>Pouzet, Maurice</creator><creator>G. Rosenberg, Ivo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20190801</creationdate><title>Free monoids and generalized metric spaces</title><author>Kabil, Mustapha ; Pouzet, Maurice ; G. Rosenberg, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-8e44d82a47faa0f07f04a382c9c4ccddac018cc51b410fbfd555116acc8334f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Discrete Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabil, Mustapha</creatorcontrib><creatorcontrib>Pouzet, Maurice</creatorcontrib><creatorcontrib>G. Rosenberg, Ivo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabil, Mustapha</au><au>Pouzet, Maurice</au><au>G. Rosenberg, Ivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free monoids and generalized metric spaces</atitle><jtitle>European journal of combinatorics</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>80</volume><spage>339</spage><epage>360</epage><pages>339-360</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Let A be an ordered alphabet, A∗ be the free monoid over A ordered by the Higman ordering, and let F(A∗) be the set of final segments of A∗. With the operation of concatenation, this set is a monoid. We show that the submonoid F∘(A∗)≔F(A∗)∖{0̸} is free. The MacNeille completion N(A∗) of A∗ is a submonoid of F(A∗). As a corollary, we obtain that the monoid N∘(A∗)≔N(A∗)∖{0̸} is free. We give an interpretation of the freeness of F∘(A∗) in the category of metric spaces over the Heyting algebra V≔F(A∗), with the non-expansive mappings as morphisms. Each final segment F of A∗ yields the injective envelope SF of a two-element metric space over V. The uniqueness of the decomposition of F is due to the uniqueness of the block decomposition of the graph GF associated to this injective envelope.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2018.02.008</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 2019-08, Vol.80, p.339-360 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02071721v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer Science Discrete Mathematics |
title | Free monoids and generalized metric spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20monoids%20and%20generalized%20metric%20spaces&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Kabil,%20Mustapha&rft.date=2019-08-01&rft.volume=80&rft.spage=339&rft.epage=360&rft.pages=339-360&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2018.02.008&rft_dat=%3Celsevier_hal_p%3ES0195669818300210%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0195669818300210&rfr_iscdi=true |